Difference between revisions of "2024 AIME II Problems"
(→Problem 8) |
R00tsofunity (talk | contribs) m |
||
Line 70: | Line 70: | ||
==Problem 10== | ==Problem 10== | ||
− | Let <math>\triangle</math><math>ABC</math> have incenter <math>I | + | Let <math>\triangle</math><math>ABC</math> have incenter <math>I</math> and circumcenter <math>O</math> with <math>\overline{IA} \perp \overline{OI}</math>, circumradius <math>13</math>, and inradius <math>6</math>. Find <math>AB \cdot AC</math>. |
[[2024 AIME II Problems/Problem 10|Solution]] | [[2024 AIME II Problems/Problem 10|Solution]] | ||
Line 101: | Line 101: | ||
==Problem 15== | ==Problem 15== | ||
− | Find the number of rectangles inside a fixed regular dodecagon (<math>12</math>-gon) where each side of the rectangle lies on a side or | + | Find the number of rectangles that can be formed inside a fixed regular dodecagon (<math>12</math>-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles. |
<asy> | <asy> |
Revision as of 01:45, 9 February 2024
2024 AIME II (Answer Key) | AoPS Contest Collections • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |
Contents
[hide]Problem 1
Among the residents of Aimeville, there are who own a diamond ring, who own a set of golf clubs, and who own a garden spade. In addition, each of the residents owns a bag of candy hearts. There are residents who own exactly two of these things, and residents who own exactly three of these things. Find the number of residents of Aimeville who own all four of these things.
Problem 2
A list of positive integers has the following properties:
The sum of the items in the list is .
The unique mode of the list is .
The median of the list is a positive integer that does not appear in the list itself.
Find the sum of the squares of all the items in the list.
Problem 3
Find the number of ways to place a digit in each cell of a 2x3 grid so that the sum of the two numbers formed by reading left to right is , and the sum of the three numbers formed by reading top to bottom is . The grid below is an example of such an arrangement because and .
Problem 4
Let and be positive real numbers that satisfy the following system of equations: Then the value of is where and are relatively prime positive integers. Find .
Problem 5
Let be a convex equilateral hexagon in which all pairs of opposite sides are parallel. The triangle whose sides are extensions of segments , , and has side lengths and . Find the side length of the hexagon.
Problem 6
Alice chooses a set of positive integers. Then Bob lists all finite nonempty sets of positive integers with the property that the maximum element of belongs to . Bob's list has sets. Find the sum of the elements of .
Problem 7
Let be the greatest four-digit integer with the property that whenever one of its digits is changed to , the resulting number is divisible by . Let and be the quotient and remainder, respectively, when is divided by . Find .
Problem 8
Torus is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let be a sphere with a radius 11. When rests on the outside of , it is externally tangent to along a circle with radius , and when rests on the outside of , it is externally tangent to along a circle with radius . The difference can be written as , where and are relatively prime positive integers. Find .
Problem 9
There are 25 indistinguishable white chips and 25 indistinguishable black chips, find the number of ways to place some of these chips such that: Every grid contains at most one chip There can only be one colour of chip in any row or column Any additional chip placed will violate one or more of the previous rules.
Problem 10
Let have incenter and circumcenter with , circumradius , and inradius . Find .
Problem 11
Find the number of triples of nonnegative integers satisfying and
Problem 12
Problem 13
Let be a 13th root of unity. Find the remainder when is divided by 1000.
Problem 14
Let be an integer. Call a positive integer if it has exactly two digits when expressed in base , and these two digits sum to . For example, is -eautiful because and . Find the least integer for which there are more than ten -eautiful integers.
Problem 15
Find the number of rectangles that can be formed inside a fixed regular dodecagon (-gon) where each side of the rectangle lies on either a side or a diagonal of the dodecagon. The diagram below shows three of those rectangles.
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by 2024 AIME I |
Followed by 2025 AIME I | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
- American Invitational Mathematics Examination
- AIME Problems and Solutions
- Mathematics competition resources
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.