Difference between revisions of "Power of a point theorem"

(Intermediate (AIME))
(Intermediate (AIME))
Line 91: Line 91:
 
Let <math>ABC</math> be a triangle inscribed in circle <math>\omega</math>. Let the tangents to <math>\omega</math> at <math>B</math> and <math>C</math> intersect at point <math>D</math>, and let <math>\overline{AD}</math> intersect <math>\omega</math> at <math>P</math>. If <math>AB=5</math>, <math>BC=9</math>, and <math>AC=10</math>, <math>AP</math> can be written as the form <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime integers. Find <math>m + n</math>.
 
Let <math>ABC</math> be a triangle inscribed in circle <math>\omega</math>. Let the tangents to <math>\omega</math> at <math>B</math> and <math>C</math> intersect at point <math>D</math>, and let <math>\overline{AD}</math> intersect <math>\omega</math> at <math>P</math>. If <math>AB=5</math>, <math>BC=9</math>, and <math>AC=10</math>, <math>AP</math> can be written as the form <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime integers. Find <math>m + n</math>.
  
Source:[[2024 AIME I Problems/Problem 10]]
+
Source: [[2024 AIME I Problems/Problem 10]]
  
 
====Olympiad (USAJMO, USAMO, IMO)====
 
====Olympiad (USAJMO, USAMO, IMO)====

Revision as of 21:42, 23 April 2024

STILL WORKING (PLEASE DON'T EDIT YET)

Theorem:

There are three unique cases for this theorem. Each case expresses the relationship between the length of line segments that pass through a common point and touch a circle in at least one point. Can be useful with cyclic quadrilaterals as well however with a slightly different application.

Case 1 (Inside the Circle):

If two chords $AB$ and $CD$ intersect at a point $P$ within a circle, then $AP\cdot BP=CP\cdot DP$

[asy] draw(circle((0,0),3));  dot((-2.82,1)); label("A",(-3.05,1.25)); dot((1,2.828)); label("B",(1.25,3.05)); draw((-2.82,1)---(1,2.828)); dot((2.3,-1.926)); label("C",(2.55,-2.346)); dot((-2.12,2.123)); label("D",(-2.37,2.507)); draw((2.3,-1.926)---(-2.12,2.123)); dot((-1.556,1.602)); label("P",(-1.656,1.202)); [/asy]

Case 2 (Outside the Circle):

Classic Configuration

Given lines $AB$ and $CB$ originate from two unique points on the circumference of a circle ($A$ and $C$), intersect each other at point $B$, outside the circle, and re-intersect the circle at points $F$ and $G$ respectively, then $BF\cdot BA=BG\cdot BC$

[asy] draw(circle((0,0),3));  dot((1.5,2.598)); label("A",(2,3)); label("B",(-6,1.6)); dot((-6,1)); label("C",(2.55,-2.5)); dot((2.12,-2.123)); dot((-2.996,-0.155)); label("G",(-3.350, -0.6)); dot((-2.429,1.761)); label("F",(-2.729,2.061)); draw((1.5,2.598)---(-6,1)); draw((2.12,-2.123)---(-6,1)); [/asy]

Tangent Line

Given Lines $AB$ and $AC$ with $AC$ tangent to the related circle at $C$, $A$ lies outside the circle, and Line $AB$ intersects the circle between $A$ and $B$ at $D$, $AD\cdot AB=AC^{2}$

[asy] draw(circle((0,0),3));  dot((0,3)); label("C",(0,3.5)); dot((-8,3)); label("A",(-8,3.5)); dot((2.5,-1.658)); label("B",(2.8,-1.958)); draw((0,3)---(-8,3)); draw((2.5,-1.658)---(-8,3)); dot((-2.907,0.741)); label("D",(-3.357,0.421)); [/asy]

Case 3 (On the Border/Useless Case):

If two chords, $AB$ and $AC$, have $A$ on the border of the circle, then the same property such that if two lines that intersect and touch a circle, then the product of each of the lines segments is the same. However since the intersection points lies on the border of the circle, one segment of each line is $0$ so no matter what, the constant product is $0$.

[asy] draw(circle((0,0),3));  dot((1,2.828)); label("A",(1.4,3.028)); dot((-2.5,-1.658)); label("B",(-2.8,-1.958)); dot((2.04,-2.2)); label("C",(2.34,-2.5)); draw((1,2.828)---(-2.5,-1.658)); draw((1,2.828)---(2.04,-2.2)); [/asy]

Proof

Problems

Introductory (AMC 10, 12)

Let $\overline{AB}$ be a diameter in a circle of radius $5\sqrt2.$ Let $\overline{CD}$ be a chord in the circle that intersects $\overline{AB}$ at a point $E$ such that $BE=2\sqrt5$ and $\angle AEC = 45^{\circ}.$ What is $CE^2+DE^2?$

Source: 2020 AMC 12B Problems/Problem 12

Intermediate (AIME)

Let $ABC$ be a triangle inscribed in circle $\omega$. Let the tangents to $\omega$ at $B$ and $C$ intersect at point $D$, and let $\overline{AD}$ intersect $\omega$ at $P$. If $AB=5$, $BC=9$, and $AC=10$, $AP$ can be written as the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers. Find $m + n$.

Source: 2024 AIME I Problems/Problem 10

Olympiad (USAJMO, USAMO, IMO)

Builders

Creator:
Proof Writer:
Other Editors (feel free to put username if you contributed):