Difference between revisions of "2006 AMC 12A Problems/Problem 9"

m (See also)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Oscar buys <math>13</math> pencils and <math>3</math> erasers for <math>$1.00</math>. A pencil costs more than an eraser, and both items cost a [[whole number]] of cents. What is the total cost, in cents, of one pencil and one eraser?
+
Oscar buys <math>13</math> pencils and <math>3</math> erasers for <math>\</math>1.00<math>. A pencil costs more than an eraser, and both items cost a [[whole number]] of cents. What is the total cost, in cents, of one pencil and one eraser?
  
<math> \mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 12\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 18</math>
+
</math> \mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 12\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 18<math>
  
<math>\mathrm{(E) \ }  20</math>
+
</math>\mathrm{(E) \ }  20<math>
  
 
== Solution ==
 
== Solution ==
Let the price of a pencil be <math>p</math> and an eraser <math>e</math>.  Then <math>13p + 3e = 100</math> with <math>p > e > 0</math>.  Since <math>p</math> and <math>e</math> are [[positive integer]]s, we must have <math>e \geq 1</math> and <math>p \geq 2</math>.
+
Let the price of a pencil be </math>p<math> and an eraser </math>e<math>.  Then </math>13p + 3e = 100<math> with </math>p > e > 0<math>.  Since </math>p<math> and </math>e<math> are [[positive integer]]s, we must have </math>e \geq 1<math> and </math>p \geq 2<math>.
  
Considering the [[equation]] <math>13p + 3e = 100</math> [[modulo]] 3 (that is, comparing the [[remainder]]s when both sides are divided by 3) we have <math>p + 0e \equiv 1 \pmod 3</math> so <math>p</math> leaves a remainder of 1 on division by 3.
+
Considering the [[equation]] </math>13p + 3e = 100<math> [[modulo]] 3 (that is, comparing the [[remainder]]s when both sides are divided by 3) we have </math>p + 0e \equiv 1 \pmod 3<math> so </math>p<math> leaves a remainder of 1 on division by 3.
  
Since <math>p \geq 2</math>, possible values for <math>p</math> are 4, 7, 10 ....
+
Since </math>p \geq 2<math>, possible values for </math>p<math> are 4, 7, 10 ....
  
Since 13 pencils cost less than 100 cents, <math>13p < 100</math>.  <math>13 \times 10 = 130</math> is too high, so <math>p</math> must be 4 or 7.
+
Since 13 pencils cost less than 100 cents, </math>13p < 100<math>.  </math>13 \times 10 = 130<math> is too high, so </math>p<math> must be 4 or 7.
  
If <math>p = 4</math> then <math>13p = 52</math> and so <math>3e = 48</math> giving <math>e = 16</math>.  This contradicts the pencil being more expensive.  The only remaining value for <math>p</math> is 7; then the 13 pencils cost <math>7 \times 13= 91</math> cents and so the 3 erasers together cost 9 cents and each eraser costs <math>\frac{9}{3} = 3</math> cents.
+
If </math>p = 4<math> then </math>13p = 52<math> and so </math>3e = 48<math> giving </math>e = 16<math>.  This contradicts the pencil being more expensive.  The only remaining value for </math>p<math> is 7; then the 13 pencils cost </math>7 \times 13= 91<math> cents and so the 3 erasers together cost 9 cents and each eraser costs </math>\frac{9}{3} = 3<math> cents.
  
Thus one pencil plus one eraser cost <math>7 + 3 = 10</math> cents, which is answer choice <math>\mathrm{(A) \ }</math>.
+
Thus one pencil plus one eraser cost </math>7 + 3 = 10<math> cents, which is answer choice </math>\mathrm{(A) \ }$.
  
 
== See also ==
 
== See also ==

Revision as of 18:22, 5 January 2008

Problem

Oscar buys $13$ pencils and $3$ erasers for $$1.00$. A pencil costs more than an eraser, and both items cost a [[whole number]] of cents. What is the total cost, in cents, of one pencil and one eraser?$ \mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 12\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 18$$ (Error compiling LaTeX. Unknown error_msg)\mathrm{(E) \ } 20$== Solution == Let the price of a pencil be$p$and an eraser$e$.  Then$13p + 3e = 100$with$p > e > 0$.  Since$p$and$e$are [[positive integer]]s, we must have$e \geq 1$and$p \geq 2$.

Considering the [[equation]]$ (Error compiling LaTeX. Unknown error_msg)13p + 3e = 100$[[modulo]] 3 (that is, comparing the [[remainder]]s when both sides are divided by 3) we have$p + 0e \equiv 1 \pmod 3$so$p$leaves a remainder of 1 on division by 3.

Since$ (Error compiling LaTeX. Unknown error_msg)p \geq 2$, possible values for$p$are 4, 7, 10 ....

Since 13 pencils cost less than 100 cents,$ (Error compiling LaTeX. Unknown error_msg)13p < 100$.$13 \times 10 = 130$is too high, so$p$must be 4 or 7.

If$ (Error compiling LaTeX. Unknown error_msg)p = 4$then$13p = 52$and so$3e = 48$giving$e = 16$.  This contradicts the pencil being more expensive.  The only remaining value for$p$is 7; then the 13 pencils cost$7 \times 13= 91$cents and so the 3 erasers together cost 9 cents and each eraser costs$\frac{9}{3} = 3$cents.

Thus one pencil plus one eraser cost$ (Error compiling LaTeX. Unknown error_msg)7 + 3 = 10$cents, which is answer choice$\mathrm{(A) \ }$.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions