Difference between revisions of "2006 AMC 12A Problems/Problem 9"
m (→See also) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Oscar buys <math>13</math> pencils and <math>3</math> erasers for <math> | + | Oscar buys <math>13</math> pencils and <math>3</math> erasers for <math>\</math>1.00<math>. A pencil costs more than an eraser, and both items cost a [[whole number]] of cents. What is the total cost, in cents, of one pencil and one eraser? |
− | <math> \mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 12\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 18< | + | </math> \mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 12\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 18<math> |
− | <math>\mathrm{(E) \ } 20< | + | </math>\mathrm{(E) \ } 20<math> |
== Solution == | == Solution == | ||
− | Let the price of a pencil be <math>p< | + | Let the price of a pencil be </math>p<math> and an eraser </math>e<math>. Then </math>13p + 3e = 100<math> with </math>p > e > 0<math>. Since </math>p<math> and </math>e<math> are [[positive integer]]s, we must have </math>e \geq 1<math> and </math>p \geq 2<math>. |
− | Considering the [[equation]] <math>13p + 3e = 100< | + | Considering the [[equation]] </math>13p + 3e = 100<math> [[modulo]] 3 (that is, comparing the [[remainder]]s when both sides are divided by 3) we have </math>p + 0e \equiv 1 \pmod 3<math> so </math>p<math> leaves a remainder of 1 on division by 3. |
− | Since <math>p \geq 2< | + | Since </math>p \geq 2<math>, possible values for </math>p<math> are 4, 7, 10 .... |
− | Since 13 pencils cost less than 100 cents, <math>13p < 100< | + | Since 13 pencils cost less than 100 cents, </math>13p < 100<math>. </math>13 \times 10 = 130<math> is too high, so </math>p<math> must be 4 or 7. |
− | If <math>p = 4< | + | If </math>p = 4<math> then </math>13p = 52<math> and so </math>3e = 48<math> giving </math>e = 16<math>. This contradicts the pencil being more expensive. The only remaining value for </math>p<math> is 7; then the 13 pencils cost </math>7 \times 13= 91<math> cents and so the 3 erasers together cost 9 cents and each eraser costs </math>\frac{9}{3} = 3<math> cents. |
− | Thus one pencil plus one eraser cost <math>7 + 3 = 10< | + | Thus one pencil plus one eraser cost </math>7 + 3 = 10<math> cents, which is answer choice </math>\mathrm{(A) \ }$. |
== See also == | == See also == |
Revision as of 18:22, 5 January 2008
Problem
Oscar buys pencils and erasers for 1.00 \mathrm{(A) \ } 10\qquad \mathrm{(B) \ } 12\qquad \mathrm{(C) \ } 15\qquad \mathrm{(D) \ } 18$$ (Error compiling LaTeX. Unknown error_msg)\mathrm{(E) \ } 20pe13p + 3e = 100p > e > 0pee \geq 1p \geq 2$.
Considering the [[equation]]$ (Error compiling LaTeX. Unknown error_msg)13p + 3e = 100p + 0e \equiv 1 \pmod 3p$leaves a remainder of 1 on division by 3.
Since$ (Error compiling LaTeX. Unknown error_msg)p \geq 2p$are 4, 7, 10 ....
Since 13 pencils cost less than 100 cents,$ (Error compiling LaTeX. Unknown error_msg)13p < 10013 \times 10 = 130p$must be 4 or 7.
If$ (Error compiling LaTeX. Unknown error_msg)p = 413p = 523e = 48e = 16p7 \times 13= 91\frac{9}{3} = 3$cents.
Thus one pencil plus one eraser cost$ (Error compiling LaTeX. Unknown error_msg)7 + 3 = 10\mathrm{(A) \ }$.
See also
2006 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |