Difference between revisions of "2000 AIME I Problems/Problem 7"
Dgreenb801 (talk | contribs) m (→Solution 2) |
(That looks better.) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
+ | ===Solution 1=== | ||
Let <math>r = \frac{m}{n} = z + \frac {1}{y}</math>. | Let <math>r = \frac{m}{n} = z + \frac {1}{y}</math>. | ||
Line 18: | Line 19: | ||
Thus <math>145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}</math>. So <math>m + n = 1 + 4 = \boxed{5}</math>. | Thus <math>145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}</math>. So <math>m + n = 1 + 4 = \boxed{5}</math>. | ||
− | == Solution 2 == | + | === Solution 2 === |
Since <math>x+(1/z)=5, 1=z(5-x)=xyz</math>, so <math>5-x=xy</math>. Also, <math>y=29-(1/x)</math> by the second equation. Substitution gives <math>x=1/5</math>, <math>y=24</math>, and <math>z=5/24</math>, so the solution is <math>5</math>. | Since <math>x+(1/z)=5, 1=z(5-x)=xyz</math>, so <math>5-x=xy</math>. Also, <math>y=29-(1/x)</math> by the second equation. Substitution gives <math>x=1/5</math>, <math>y=24</math>, and <math>z=5/24</math>, so the solution is <math>5</math>. |
Revision as of 19:07, 6 January 2008
Contents
[hide]Problem
Suppose that
and
are three positive numbers that satisfy the equations
and
Then
where
and
are relatively prime positive integers. Find
.
Solution
Solution 1
Let .
Thus . So
.
Solution 2
Since , so
. Also,
by the second equation. Substitution gives
,
, and
, so the solution is
.
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |