Difference between revisions of "2000 AMC 12 Problems/Problem 2"

 
Line 16: Line 16:
  
 
We see that <math>a(a^{2000})=a^{2001}.</math> Only answer choice <math>\boxed{\textbf{(A)}}</math> satisfies this requirement.
 
We see that <math>a(a^{2000})=a^{2001}.</math> Only answer choice <math>\boxed{\textbf{(A)}}</math> satisfies this requirement.
 +
 +
-SirAppel
  
 
== Video Solution (Daily Dose of Math) ==
 
== Video Solution (Daily Dose of Math) ==
Line 23: Line 25:
 
~Thesmartgreekmathdude
 
~Thesmartgreekmathdude
  
-SirAppel
 
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2000|num-b=1|num-a=3}}
 
{{AMC12 box|year=2000|num-b=1|num-a=3}}

Latest revision as of 16:24, 14 July 2024

The following problem is from both the 2000 AMC 12 #2 and 2000 AMC 10 #2, so both problems redirect to this page.

Problem

$2000(2000^{2000}) = ?$

$\textbf{(A)} \ 2000^{2001}  \qquad \textbf{(B)} \ 4000^{2000}  \qquad \textbf{(C)} \ 2000^{4000}  \qquad \textbf{(D)} \ 4,000,000^{2000}  \qquad \textbf{(E)} \ 2000^{4,000,000}$

Solution

We can use an elementary exponents rule to solve our problem. We know that $a^b\cdot a^c = a^{b+c}$. Hence, $2000(2000^{2000}) = (2000^{1})(2000^{2000}) = 2000^{2000+1} = 2000^{2001} \Rightarrow \boxed{\textbf{(A) } 2000^{2001}}$

Solution edited by armang32324 and integralarefun

Solution 2

We see that $a(a^{2000})=a^{2001}.$ Only answer choice $\boxed{\textbf{(A)}}$ satisfies this requirement.

-SirAppel

Video Solution (Daily Dose of Math)

https://www.youtube.com/watch?v=h0QtF9J0oPs

~Thesmartgreekmathdude

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png