Difference between revisions of "1959 AHSME Problems/Problem 28"

m (formatted fractions)
m (formatting fix)
Line 4: Line 4:
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{bc}{a^2}\qquad\textbf{(C)}\ \frac{a^2}{bc}\qquad\textbf{(D)}\ \frac{c}{b}\qquad\textbf{(E)}\ \frac{c}{a} </math>  
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{bc}{a^2}\qquad\textbf{(C)}\ \frac{a^2}{bc}\qquad\textbf{(D)}\ \frac{c}{b}\qquad\textbf{(E)}\ \frac{c}{a} </math>  
 
== Solution ==
 
== Solution ==
By the angle bisector theorem, <math>\frac{AM}{AB}=\frac{AC}{BC}</math> and <math>\frac{CL}{LB}=\frac{AC}{AB}</math>, so by rearranging the given equation and noting <math>AB=c</math> and <math>BC=a</math>, <math>k=c/a\rightarrow\boxed{\textbf{E}}</math>.
+
By the angle bisector theorem, <math>\frac{AM}{AB}=\frac{AC}{BC}</math> and <math>\frac{CL}{LB}=\frac{AC}{AB}</math>, so by rearranging the given equation and noting <math>AB=c</math> and <math>BC=a</math>, <math>k=\frac{c}{a}\rightarrow\boxed{\textbf{E}}</math>.
  
 
== See also ==
 
== See also ==
 
{{AHSME 50p box|year=1959|num-b=27|num-a=29}}
 
{{AHSME 50p box|year=1959|num-b=27|num-a=29}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:55, 21 July 2024

Problem 28

In triangle $ABC$, $AL$ bisects angle $A$, and $CM$ bisects angle $C$. Points $L$ and $M$ are on $BC$ and $AB$, respectively. The sides of $\triangle ABC$ are $a$, $b$, and $c$. Then $\frac{AM}{MB}=k\frac{CL}{LB}$ where $k$ is: $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{bc}{a^2}\qquad\textbf{(C)}\ \frac{a^2}{bc}\qquad\textbf{(D)}\ \frac{c}{b}\qquad\textbf{(E)}\ \frac{c}{a}$

Solution

By the angle bisector theorem, $\frac{AM}{AB}=\frac{AC}{BC}$ and $\frac{CL}{LB}=\frac{AC}{AB}$, so by rearranging the given equation and noting $AB=c$ and $BC=a$, $k=\frac{c}{a}\rightarrow\boxed{\textbf{E}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png