Difference between revisions of "1959 AHSME Problems/Problem 41"
m (see also box) |
(diagram) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
+ | |||
+ | <asy> | ||
+ | |||
+ | import geometry; | ||
+ | |||
+ | point A = (0,4); | ||
+ | point B = (-16,16); | ||
+ | point C = (16,16); | ||
+ | point D = (-16,0); | ||
+ | point E = (16,0); | ||
+ | point F = (0,16); | ||
+ | |||
+ | // The line | ||
+ | line l = line((-20,0),(20,0)); | ||
+ | draw(l, Arrows); | ||
+ | |||
+ | // Circles | ||
+ | draw(circle(A,4)); | ||
+ | dot(A); | ||
+ | label("A",A,(0,-3)); | ||
+ | draw(circle(B,16)); | ||
+ | dot(B); | ||
+ | label("B",B,W); | ||
+ | draw(circle(C,16)); | ||
+ | dot(C); | ||
+ | label("C",C,(1,0)); | ||
+ | |||
+ | //Tangency points | ||
+ | dot(D); | ||
+ | label("D",D,S); | ||
+ | dot(E); | ||
+ | label("E",E,S); | ||
+ | dot(F); | ||
+ | label("F",F,NE); | ||
+ | |||
+ | // Triangle AFB, Segment BD | ||
+ | draw(triangle(A,F,B)); | ||
+ | draw(B--D); | ||
+ | |||
+ | // Right angle labels | ||
+ | markscalefactor=0.3; | ||
+ | draw(rightanglemark(F,B,D)); | ||
+ | draw(rightanglemark(B,D,E)); | ||
+ | |||
+ | </asy> | ||
+ | |||
<math>\fbox{D}</math> | <math>\fbox{D}</math> | ||
Revision as of 18:21, 21 July 2024
Problem
On the same side of a straight line three circles are drawn as follows: a circle with a radius of inches is tangent to the line, the other two circles are equal, and each is tangent to the line and to the other two circles. The radius of the equal circles is:
Solution
See also
1959 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 40 |
Followed by Problem 42 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.