Difference between revisions of "1959 AHSME Problems/Problem 41"

m (see also box)
(diagram)
Line 4: Line 4:
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
 +
import geometry;
 +
 +
point A = (0,4);
 +
point B = (-16,16);
 +
point C = (16,16);
 +
point D = (-16,0);
 +
point E = (16,0);
 +
point F = (0,16);
 +
 +
// The line
 +
line l = line((-20,0),(20,0));
 +
draw(l, Arrows);
 +
 +
// Circles
 +
draw(circle(A,4));
 +
dot(A);
 +
label("A",A,(0,-3));
 +
draw(circle(B,16));
 +
dot(B);
 +
label("B",B,W);
 +
draw(circle(C,16));
 +
dot(C);
 +
label("C",C,(1,0));
 +
 +
//Tangency points
 +
dot(D);
 +
label("D",D,S);
 +
dot(E);
 +
label("E",E,S);
 +
dot(F);
 +
label("F",F,NE);
 +
 +
// Triangle AFB, Segment BD
 +
draw(triangle(A,F,B));
 +
draw(B--D);
 +
 +
// Right angle labels
 +
markscalefactor=0.3;
 +
draw(rightanglemark(F,B,D));
 +
draw(rightanglemark(B,D,E));
 +
 +
</asy>
 +
 
<math>\fbox{D}</math>
 
<math>\fbox{D}</math>
  

Revision as of 18:21, 21 July 2024

Problem

On the same side of a straight line three circles are drawn as follows: a circle with a radius of $4$ inches is tangent to the line, the other two circles are equal, and each is tangent to the line and to the other two circles. The radius of the equal circles is: $\textbf{(A)}\ 24 \qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 16\qquad\textbf{(E)}\ 12$

Solution

[asy]  import geometry;  point A = (0,4); point B = (-16,16); point C = (16,16); point D = (-16,0); point E = (16,0); point F = (0,16);  // The line line l = line((-20,0),(20,0)); draw(l, Arrows);  // Circles draw(circle(A,4)); dot(A); label("A",A,(0,-3)); draw(circle(B,16)); dot(B); label("B",B,W); draw(circle(C,16)); dot(C); label("C",C,(1,0));  //Tangency points dot(D); label("D",D,S); dot(E); label("E",E,S); dot(F); label("F",F,NE);  // Triangle AFB, Segment BD draw(triangle(A,F,B)); draw(B--D);  // Right angle labels markscalefactor=0.3; draw(rightanglemark(F,B,D)); draw(rightanglemark(B,D,E));  [/asy]

$\fbox{D}$

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 40
Followed by
Problem 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png