Difference between revisions of "2016 AMC 10A Problems/Problem 12"
(→Video Solution) |
Mathboy282 (talk | contribs) (→Solution 1) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A)}\ p<\dfrac{1}{8}\qquad\textbf{(B)}\ p=\dfrac{1}{8}\qquad\textbf{(C)}\ \dfrac{1}{8}<p<\dfrac{1}{3}\qquad\textbf{(D)}\ p=\dfrac{1}{3}\qquad\textbf{(E)}\ p>\dfrac{1}{3}</math> | <math>\textbf{(A)}\ p<\dfrac{1}{8}\qquad\textbf{(B)}\ p=\dfrac{1}{8}\qquad\textbf{(C)}\ \dfrac{1}{8}<p<\dfrac{1}{3}\qquad\textbf{(D)}\ p=\dfrac{1}{3}\qquad\textbf{(E)}\ p>\dfrac{1}{3}</math> | ||
− | ==Solution 1== | + | ==Solution 1 (Account for Order)== |
For the product to be odd, all three factors have to be odd. The probability of this is <math>\frac{1008}{2016} \cdot \frac{1007}{2015} \cdot \frac{1006}{2014}</math>. | For the product to be odd, all three factors have to be odd. The probability of this is <math>\frac{1008}{2016} \cdot \frac{1007}{2015} \cdot \frac{1006}{2014}</math>. | ||
Revision as of 00:57, 18 October 2024
Contents
Problem
Three distinct integers are selected at random between and , inclusive. Which of the following is a correct statement about the probability that the product of the three integers is odd?
Solution 1 (Account for Order)
For the product to be odd, all three factors have to be odd. The probability of this is .
, but and are slightly less than . Thus, the whole product is slightly less than , so .
Solution 2
For the product to be odd, all three factors have to be odd. There are a total of ways to choose 3 numbers at random, and there are to choose 3 odd numbers. Therefore, the probability of choosing 3 odd numbers is . Simplifying this, we obtain , which is slightly less than , so our answer is .
Solution 3
The probability that the product is odd, allowing duplication of the integers, is just . Since forbidding duplication reduces the probability of all three integers being odd, we see and our answer is .
Video Solution (CREATIVE THINKING)
~Education, the Study of Everything
Video Solution
https://youtu.be/dHY8gjoYFXU?t=300
~IceMatrix
~savannahsolver
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.