Difference between revisions of "2008 AMC 10B Problems/Problem 5"

(solution)
Line 1: Line 1:
 
==Problem==
 
==Problem==
For [[real number]]s <math>a</math> and <math>b</math>, define <math>a\</math> b=(a-b)^2<math>. What is </math>(x-y)^2\<math> (y-x)^2</math>?
+
For [[real number]]s <math>a</math> and <math>b</math>, define <math>a\</math><math> b=(a-b)^2</math>. What is <math>(x-y)^2\</math><math> (y-x)^2</math>?
  
 
<math>\mathrm{(A)}\ 0\qquad\mathrm{(B)}\ x^2+y^2\qquad\mathrm{(C)}\ 2x^2\qquad\mathrm{(D)}\ 2y^2\qquad\mathrm{(E)}\ 4xy</math>
 
<math>\mathrm{(A)}\ 0\qquad\mathrm{(B)}\ x^2+y^2\qquad\mathrm{(C)}\ 2x^2\qquad\mathrm{(D)}\ 2y^2\qquad\mathrm{(E)}\ 4xy</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
Since <math>(-a)^2 = a^2</math>, it follows that <math>(x-y)^2 = (y-x)^2</math>, and
 +
<center><math>(x-y)^2\</math><math> (y-x)^2 = [(x-y)^2 - (y-x)^2]^2 = [(x-y)^2 - (x-y)^2]^2 = 0\ \mathrm{(A)}.</math></center>
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=B|num-b=4|num-a=6}}
 
{{AMC10 box|year=2008|ab=B|num-b=4|num-a=6}}
 +
 +
[[Category:Articles with dollar signs]]
 +
[[Category:Introductory Algebra Problems]]

Revision as of 10:47, 25 April 2008

Problem

For real numbers $a$ and $b$, define $a$$b=(a-b)^2$. What is $(x-y)^2$$(y-x)^2$?

$\mathrm{(A)}\ 0\qquad\mathrm{(B)}\ x^2+y^2\qquad\mathrm{(C)}\ 2x^2\qquad\mathrm{(D)}\ 2y^2\qquad\mathrm{(E)}\ 4xy$

Solution

Since $(-a)^2 = a^2$, it follows that $(x-y)^2 = (y-x)^2$, and

$(x-y)^2$$(y-x)^2 = [(x-y)^2 - (y-x)^2]^2 = [(x-y)^2 - (x-y)^2]^2 = 0\ \mathrm{(A)}.$

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions