Difference between revisions of "1992 AIME Problems/Problem 14"
m (→See also: box cat) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In triangle <math>ABC^{}_{}</math>, <math> | + | In triangle <math>ABC^{}_{}</math>, <math>A'</math>, <math>B'</math>, and <math>C'</math> are on the sides <math>BC</math>, <math>AC^{}_{}</math>, and <math>AB^{}_{}</math>, respectively. Given that <math>AA'</math>, <math>BB'</math>, and <math>CC'</math> are concurrent at the point <math>O^{}_{}</math>, and that <math>\frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'}=92</math>, find <math>\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'}</math>. |
== Solution == | == Solution == | ||
− | {{ | + | Using [[mass points]], let the weights of <math>A</math>, <math>B</math>, and <math>C</math> be <math>a</math>, <math>b</math>, and <math>c</math> respectively. |
+ | |||
+ | Then, the weights of <math>A'</math>, <math>B'</math>, and <math>C'</math> are <math>b+c</math>, <math>c+a</math>, and <math>a+b</math> respectively. | ||
+ | |||
+ | Thus, <math>\frac{AO^{}_{}}{OA'} = \frac{b+c}{a}</math>, <math>\frac{BO^{}_{}}{OB'} = \frac{c+a}{b}</math>, and <math>\frac{CO^{}_{}}{OC'} = \frac{a+b}{c}</math>. | ||
+ | |||
+ | Therefore: | ||
+ | <math>\frac{AO}{OA'}\cdot \frac{BO}{OB'}\cdot \frac{CO}{OC'} = \frac{b+c}{a} \cdot \frac{c+a}{b} \cdot \frac{a+b}{c}</math> <math>= \frac{2abc+b^2c+bc^2+c^2a+ca^2+a^2b+ab^2}{abc} =</math> | ||
+ | |||
+ | <math>2+\frac{bc(b+c)}{abc}+\frac{ca(c+a)}{abc}+\frac{ab(a+b)}{abc} = 2 + \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} </math> <math>= 2 + \frac{AO^{}_{}}{OA'}+\frac{BO}{OB'}+\frac{CO}{OC'} = 2+92 = \boxed{094}</math>. | ||
== See also == | == See also == |
Revision as of 18:13, 12 June 2008
Problem
In triangle , , , and are on the sides , , and , respectively. Given that , , and are concurrent at the point , and that , find .
Solution
Using mass points, let the weights of , , and be , , and respectively.
Then, the weights of , , and are , , and respectively.
Thus, , , and .
Therefore:
.
See also
1992 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |