Difference between revisions of "2008 AMC 10B Problems/Problem 6"

m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Points B and C lie on AD. The length of AB is 4 times the length of BD, and the length of AC is 9 times the length of CD. The length of BC is what fraction of the length of AD?
+
Points <math>B</math> and <math>C</math> lie on <math>\overline{AD}</math>. The length of <math>\overline{AB}</math> is <math>4</math> times the length of <math>\overline{BD}</math>, and the length of <math>\overline{AC}</math> is <math>9</math> times the length of <math>\overline{CD}</math>. The length of <math>\overline{BC}</math> is what fraction of the length of <math>\overline{AD}</math>?
  
A) 1/36 B) 1/13 C) 1/10 D) 5/36 E) 1/5
+
<math> \textbf{(A)}\ \frac{1}{36}\qquad\textbf{(B)}\ \frac{1}{13}\qquad\textbf{(C)}\ \frac{1}{10}\qquad\textbf{(D)}\ \frac{5}{36}\qquad\textbf{(E)}\ \frac{1}{5} </math>
  
 
==Solution==
 
==Solution==

Revision as of 11:51, 29 October 2009

Problem

Points $B$ and $C$ lie on $\overline{AD}$. The length of $\overline{AB}$ is $4$ times the length of $\overline{BD}$, and the length of $\overline{AC}$ is $9$ times the length of $\overline{CD}$. The length of $\overline{BC}$ is what fraction of the length of $\overline{AD}$?

$\textbf{(A)}\ \frac{1}{36}\qquad\textbf{(B)}\ \frac{1}{13}\qquad\textbf{(C)}\ \frac{1}{10}\qquad\textbf{(D)}\ \frac{5}{36}\qquad\textbf{(E)}\ \frac{1}{5}$

Solution

Let CD = 1. Then AB = 4(BC+1), and AB+BC = 9*1. From this system of equations we obtain BC = 1. Adding CD to both sides of the second equation, we obtain AB+BC+CD = 9+1 = 10 = AD. BC/AD = 1/10 (C)

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions