Difference between revisions of "1993 AIME Problems/Problem 8"
(→See also) |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | Call the two subsets <math>m</math> and <math>n</math>. For each of the elements in <math>S</math>, we can assign it to either <math>m</math>, <math>n</math>, or both. This gives us <math>3^6</math> possible methods of selection. However, because the order of the subsets does not matter, each possible selection is double counted, except the case where both <math>m</math> and <math>n</math> contain all <math>6</math> elements of <math> | + | Call the two subsets <math>m</math> and <math>n</math>. For each of the elements in <math>S</math>, we can assign it to either <math>m</math>, <math>n</math>, or both. This gives us <math>3^6</math> possible methods of selection. However, because the order of the subsets does not matter, each possible selection is double counted, except the case where both <math>m</math> and <math>n</math> contain all <math>6</math> elements of <math>S</math>. So our final answer is then <math>\frac {3^6 - 1}{2} + 1 = \boxed{365}</math> |
== See also == | == See also == | ||
{{AIME box|year=1993|num-b=7|num-a=9}} | {{AIME box|year=1993|num-b=7|num-a=9}} |
Revision as of 00:06, 7 December 2009
Problem
Let be a set with six elements. In how many different ways can one select two not necessarily distinct subsets of so that the union of the two subsets is ? The order of selection does not matter; for example, the pair of subsets , represents the same selection as the pair , .
Solution
Call the two subsets and . For each of the elements in , we can assign it to either , , or both. This gives us possible methods of selection. However, because the order of the subsets does not matter, each possible selection is double counted, except the case where both and contain all elements of . So our final answer is then
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |