Difference between revisions of "2005 AIME II Problems/Problem 5"
m (minor fmt) |
Talkinaway (talk | contribs) |
||
Line 7: | Line 7: | ||
*For the case <math> b=a^3 </math>, note that <math> 12^3=1728 </math> while <math> 13^3=2197 </math>. Therefore, for this case, all values of <math>a</math> from <math>2</math> to <math>12</math> work. | *For the case <math> b=a^3 </math>, note that <math> 12^3=1728 </math> while <math> 13^3=2197 </math>. Therefore, for this case, all values of <math>a</math> from <math>2</math> to <math>12</math> work. | ||
There are <math> 44-2+1=43 </math> possibilities for the square case and <math> 12-2+1=11 </math> possibilities for the cube case. Thus, the answer is <math> 43+11= \boxed{054}</math>. | There are <math> 44-2+1=43 </math> possibilities for the square case and <math> 12-2+1=11 </math> possibilities for the cube case. Thus, the answer is <math> 43+11= \boxed{054}</math>. | ||
+ | |||
+ | Note that Inclusion-Exclusion does not need to be used, as the problem is asking for ordered pairs <math>(a,b)</math>, and not for the number of possible values of <math>b</math>. Were the problem to ask for the number of possible values of <math>b</math>, the values of <math>b^6</math> under <math>2005</math> would have to be subtracted, which would just be <math>2 values: 2^6</math> and <math>3^6</math>. | ||
== See also == | == See also == |
Revision as of 19:18, 3 January 2010
Problem
Determine the number of ordered pairs of integers such that and
Solution
The equation can be rewritten as Multiplying through by and factoring yields . Therefore, or , so either or .
- For the case , note that and . Thus, all values of from to will work.
- For the case , note that while . Therefore, for this case, all values of from to work.
There are possibilities for the square case and possibilities for the cube case. Thus, the answer is .
Note that Inclusion-Exclusion does not need to be used, as the problem is asking for ordered pairs , and not for the number of possible values of . Were the problem to ask for the number of possible values of , the values of under would have to be subtracted, which would just be and .
See also
2005 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |