Difference between revisions of "2010 AMC 12B Problems/Problem 5"

(See also)
Line 13: Line 13:
  
 
== See also ==
 
== See also ==
{{AMC12 box|year=2010|num-b=12|num-a=14|ab=B}}
+
{{AMC12 box|year=2010|num-b=4|num-a=6|ab=B}}

Revision as of 18:08, 28 January 2011

Problem 5

Lucky Larry's teacher asked him to substitute numbers for $a$, $b$, $c$, $d$, and $e$ in the expression $a-(b-(c-(d+e)))$ and evaluate the result. Larry ignored the parenthese but added and subtracted correctly and obtained the correct result by coincidence. The number Larry sustitued for $a$, $b$, $c$, and $d$ were $1$, $2$, $3$, and $4$, respectively. What number did Larry substitude for $e$?

$\textbf{(A)}\ -5 \qquad \textbf{(B)}\ -3 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 5$

Solution

We simply plug in the numbers \[1 - 2 - 3 - 4 + e = 1 - (2 - (3 - (4 + e)))\] \[-8 + e = -2 - e\] \[2e = 6\] \[e = 3 \;\;(D)\]


See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions