Difference between revisions of "2010 AMC 12B Problems/Problem 22"

(Created page with '== Problem 22 == Let <math>ABCD</math> be a cyclic quadralateral. The side lengths of <math>ABCD</math> are distinct integers less than <math>15</math> such that <math>BC\cdot CD…')
 
m (Problem 22)
Line 1: Line 1:
 
== Problem 22 ==
 
== Problem 22 ==
Let <math>ABCD</math> be a cyclic quadralateral. The side lengths of <math>ABCD</math> are distinct integers less than <math>15</math> such that <math>BC\cdot CD=AB\cdot DA</math>. What is the largest possible value of <math>BD</math>?
+
Let <math>ABCD</math> be a cyclic quadrilateral. The side lengths of <math>ABCD</math> are distinct integers less than <math>15</math> such that <math>BC\cdot CD=AB\cdot DA</math>. What is the largest possible value of <math>BD</math>?
  
 
<math>\textbf{(A)}\ \sqrt{\dfrac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\dfrac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\dfrac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\dfrac{533}{2}}</math>
 
<math>\textbf{(A)}\ \sqrt{\dfrac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\dfrac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\dfrac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\dfrac{533}{2}}</math>

Revision as of 21:22, 7 February 2011

Problem 22

Let $ABCD$ be a cyclic quadrilateral. The side lengths of $ABCD$ are distinct integers less than $15$ such that $BC\cdot CD=AB\cdot DA$. What is the largest possible value of $BD$?

$\textbf{(A)}\ \sqrt{\dfrac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\dfrac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\dfrac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\dfrac{533}{2}}$

Solution

See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions