Difference between revisions of "2010 AMC 12B Problems/Problem 22"
(Created page with '== Problem 22 == Let <math>ABCD</math> be a cyclic quadralateral. The side lengths of <math>ABCD</math> are distinct integers less than <math>15</math> such that <math>BC\cdot CD…') |
m (→Problem 22) |
||
Line 1: | Line 1: | ||
== Problem 22 == | == Problem 22 == | ||
− | Let <math>ABCD</math> be a cyclic | + | Let <math>ABCD</math> be a cyclic quadrilateral. The side lengths of <math>ABCD</math> are distinct integers less than <math>15</math> such that <math>BC\cdot CD=AB\cdot DA</math>. What is the largest possible value of <math>BD</math>? |
<math>\textbf{(A)}\ \sqrt{\dfrac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\dfrac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\dfrac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\dfrac{533}{2}}</math> | <math>\textbf{(A)}\ \sqrt{\dfrac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\dfrac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\dfrac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\dfrac{533}{2}}</math> |
Revision as of 21:22, 7 February 2011
Problem 22
Let be a cyclic quadrilateral. The side lengths of are distinct integers less than such that . What is the largest possible value of ?
Solution
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |