Difference between revisions of "2001 AMC 10 Problems"
Pidigits125 (talk | contribs) (→Problem 16) |
Pidigits125 (talk | contribs) (→Problem 17) |
||
Line 152: | Line 152: | ||
label("<math>252^{\circ}</math>",(0.05,0.05),NE);[/asy] | label("<math>252^{\circ}</math>",(0.05,0.05),NE);[/asy] | ||
− | <math> \textbf{(A)} A cone with slant height of 10 and radius 6 </math> | + | <math> \textbf{(A)} \text{A cone with slant height of 10 and radius 6} </math> |
− | <math> \textbf{(B)} A cone with height of 10 and radius 6 </math> | + | <math> \textbf{(B)} \text{A cone with height of 10 and radius 6} </math> |
− | <math> \textbf{(C)} A cone with slant height of 10 and radius 7 </math> | + | <math> \textbf{(C)} \text{A cone with slant height of 10 and radius 7} </math> |
− | <math> \textbf{(D)} A cone with height of 10 and radius 7 </math> | + | <math> \textbf{(D)} \text{A cone with height of 10 and radius 7} </math> |
− | <math> \textbf{(E)} A cone with slant height of 10 and radius 8 </math> | + | <math> \textbf{(E)} \text{A cone with slant height of 10 and radius 8} </math> |
Revision as of 16:45, 16 March 2011
Contents
Problem 1
The median of the list is . What is the mean?
Problem 2
A number is more than the product of its reciprocal and its additive inverse. In which interval does the number lie?
Problem 3
The sum of two numbers is . Suppose is added to each number and then each of the resulting numbers is doubled. What is the sum of the final two numbers?
Problem 4
What is the maximum number for the possible points of intersection of a circle and a triangle?
Problem 5
How many of the twelve pentominoes have at least one line of symmetry?
Problem 6
Let and denote the product and the sum, respectively, of the digits of the integer . For example, and . Suppose is a two-digit number such that . What is the units digit of ?
Problem 7
When the decimal point of a certain positive decimal number is moved four places to the right, the new number is four times the reciprocal of the original number. What is the original number?
Problem 8
Wanda, Darren, Beatrice, and Chi are tutors in the school math lab. Their schedule is as follows: Darren works every third school day, Wanda works every fourth school day, Beatrice works every sixth school day, and Chi works every seventh school day. Today they are all working in the math lab. In how many school days from today will they next be together tutoring in the lab?
Problem 9
The state income tax where Kristin lives is levied at the rate of of the first of annual income plus of any amount above . Kristin noticed that the state income tax she paid amounted to of her annual income. What was her annual income?
Problem 10
If , , and are positive with , , and , then is
Problem 11
Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains unit squares. The second ring contains unit squares. If we continue this process, the number of unit squares in the ring is
Problem 12
Suppose that is the product of three consecutive integers and that is divisible by . Which of the following is not necessarily a divisor of ?
Problem 13
A telephone number has the form , where each letter represents a different digit. The digits in each part of the numbers are in decreasing order; that is, , , and . Furthermore, , , and are consecutive even digits; , , , and are consecutive odd digits; and . Find .
Problem 14
A charity sells benefit tickets for a total of . Some tickets sell for full price (a whole dollar amount), and the rest sells for half price. How much money is raised by the full-price tickets?
Problem 15
A street has parallel curbs feet apart. A crosswalk bounded by two parallel stripes crosses the street at an angle. The length of the curb between the stripes is feet and each stripe is feet long. Find the distance, in feet, between the stripes.
Problem 16
The mean of three numbers is more than the least of the numbers and less than the greatest. The median of the three numbers is . What is their sum?
Problem 17
Which of the cones listed below can be formed from a sector of a circle of radius by aligning the two straight sides?
[asy] import graph; unitsize(1.5cm); defaultpen(fontsize(8pt)); draw(Arc((0,0),1,-72,180),linewidth(.8pt)); draw(dir(288)--(0,0)--(-1,0),linewidth(.8pt)); label("",(-0.5,0),S); draw(Arc((0,0),0.1,-72,180)); label("",(0.05,0.05),NE);[/asy]