2001 AMC 10 Problems

2001 AMC 10 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF


  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

The median of the list $n, n + 3, n + 4, n + 5, n + 6, n + 8, n + 10, n + 12, n + 15$ is $10$. What is the mean?

$\textbf{(A) } 4 \qquad\textbf{(B) } 6 \qquad\textbf{(C) } 7 \qquad\textbf{(D) } 10 \qquad\textbf{(E) } 11$


Problem 2

A number $x$ is $2$ more than the product of its reciprocal and its additive inverse. In which interval does the number lie?

$\textbf{(A) }  -4\leq x\leq -2 \qquad\textbf{(B) } -2<x\leq 0 \qquad\textbf{(C) } 0<x\leq 2 \qquad\textbf{(D) } 2<x\leq 4 \qquad\textbf{(E) } 4<x\leq 6$


Problem 3

The sum of two numbers is $S$. Suppose $3$ is added to each number and then each of the resulting numbers is doubled. What is the sum of the final two numbers?

$\textbf{(A) } 2S+3 \qquad\textbf{(B) } 3S+2 \qquad\textbf{(C) } 3S+6 \qquad\textbf{(D) } 2S+6 \qquad\textbf{(E) } 2S+12$


Problem 4

What is the maximum number for the possible points of intersection of a circle and a triangle?

$\textbf{(A) } 2 \qquad\textbf{(B) } 3 \qquad\textbf{(C) } 4 \qquad\textbf{(D) } 5 \qquad\textbf{(E) } 6$


Problem 5

How many of the twelve pentominoes pictured below have at least one line of reflectional symmetry?

[asy] unitsize(5mm); defaultpen(linewidth(1pt)); draw(shift(2,0)*unitsquare); draw(shift(2,1)*unitsquare); draw(shift(2,2)*unitsquare); draw(shift(1,2)*unitsquare); draw(shift(0,2)*unitsquare); draw(shift(2,4)*unitsquare); draw(shift(2,5)*unitsquare); draw(shift(2,6)*unitsquare); draw(shift(1,5)*unitsquare); draw(shift(0,5)*unitsquare); draw(shift(4,8)*unitsquare); draw(shift(3,8)*unitsquare); draw(shift(2,8)*unitsquare); draw(shift(1,8)*unitsquare); draw(shift(0,8)*unitsquare); draw(shift(6,8)*unitsquare); draw(shift(7,8)*unitsquare); draw(shift(8,8)*unitsquare); draw(shift(9,8)*unitsquare); draw(shift(9,9)*unitsquare); draw(shift(6,5)*unitsquare); draw(shift(7,5)*unitsquare); draw(shift(8,5)*unitsquare); draw(shift(7,6)*unitsquare); draw(shift(7,4)*unitsquare); draw(shift(6,1)*unitsquare); draw(shift(7,1)*unitsquare); draw(shift(8,1)*unitsquare); draw(shift(6,0)*unitsquare); draw(shift(7,2)*unitsquare); draw(shift(11,8)*unitsquare); draw(shift(12,8)*unitsquare); draw(shift(13,8)*unitsquare); draw(shift(14,8)*unitsquare); draw(shift(13,9)*unitsquare); draw(shift(11,5)*unitsquare); draw(shift(12,5)*unitsquare); draw(shift(13,5)*unitsquare); draw(shift(11,6)*unitsquare); draw(shift(13,4)*unitsquare); draw(shift(11,1)*unitsquare); draw(shift(12,1)*unitsquare); draw(shift(13,1)*unitsquare); draw(shift(13,2)*unitsquare); draw(shift(14,2)*unitsquare); draw(shift(16,8)*unitsquare); draw(shift(17,8)*unitsquare); draw(shift(18,8)*unitsquare); draw(shift(17,9)*unitsquare); draw(shift(18,9)*unitsquare); draw(shift(16,5)*unitsquare); draw(shift(17,6)*unitsquare); draw(shift(18,5)*unitsquare); draw(shift(16,6)*unitsquare); draw(shift(18,6)*unitsquare); draw(shift(16,0)*unitsquare); draw(shift(17,0)*unitsquare); draw(shift(17,1)*unitsquare); draw(shift(18,1)*unitsquare); draw(shift(18,2)*unitsquare);[/asy]

$\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } 7$


Problem 6

Let $P(n)$ and $S(n)$ denote the product and the sum, respectively, of the digits of the integer $n$. For example, $P(23) = 6$ and $S(23) = 5$. Suppose $N$ is a two-digit number such that $N = P(N)+S(N)$. What is the units digit of $N$?

$\textbf{(A) } 2 \qquad\textbf{(B) } 3 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 9$


Problem 7

When the decimal point of a certain positive decimal number is moved four places to the right, the new number is four times the reciprocal of the original number. What is the original number?

$\textbf{(A) } 0.0002 \qquad\textbf{(B) } 0.002 \qquad\textbf{(C) } 0.02 \qquad\textbf{(D) } 0.2 \qquad\textbf{(E) } 2$


Problem 8

Wanda, Darren, Beatrice, and Chi are tutors in the school math lab. Their schedule is as follows: Darren works every third school day, Wanda works every fourth school day, Beatrice works every sixth school day, and Chi works every seventh school day. Today they are all working in the math lab. In how many school days from today will they next be together tutoring in the lab?

$\textbf{(A) } 42 \qquad\textbf{(B) } 84 \qquad\textbf{(C) } 126 \qquad\textbf{(D) } 178 \qquad\textbf{(E) } 252$


Problem 9

The state income tax where Kristin lives is levied at the rate of $p\%$ of the first $\textdollar 28000$ of annual income plus $(p + 2)\%$ of any amount above $\textdollar 28000$. Kristin noticed that the state income tax she paid amounted to $(p + 0.25)\%$ of her annual income. What was her annual income?

$\textbf{(A) } \textdollar 28,000\qquad\textbf{(B) } \textdollar 32,000\qquad\textbf{(C) }\textdollar 35,000\qquad\textbf{(D) } \textdollar 42,000\qquad\textbf{(E) } \textdollar 56,000$


Problem 10

If $x$, $y$, and $z$ are positive with $xy = 24$, $xz = 48$, and $yz = 72$, then $x + y + z$ is

$\textbf{(A) }18\qquad\textbf{(B) }19\qquad\textbf{(C) }20\qquad\textbf{(D) }22\qquad\textbf{(E) }24$


Problem 11

Consider the dark square in an array of unit squares, part of which is shown. The first ring of squares around this center square contains $8$ unit squares. The second ring contains $16$ unit squares. If we continue this process, the number of unit squares in the $100^\text{th}$ ring is

[asy] unitsize(3mm); defaultpen(linewidth(1pt)); fill((2,2)--(2,7)--(7,7)--(7,2)--cycle, mediumgray); fill((3,3)--(6,3)--(6,6)--(3,6)--cycle, gray); fill((4,4)--(5,4)--(5,5)--(4,5)--cycle, black); for(real i=0; i<=9; ++i) { draw((i,0)--(i,9)); draw((0,i)--(9,i)); }[/asy]

$\textbf{(A)}\ 396 \qquad \textbf{(B)}\ 404 \qquad \textbf{(C)}\ 800 \qquad \textbf{(D)}\ 10,\!000 \qquad \textbf{(E)}\ 10,\!404$


Problem 12

Suppose that $n$ is the product of three consecutive integers and that $n$ is divisible by $7$. Which of the following is not necessarily a divisor of $n$?

$\textbf{(A)}\ 6 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 21 \qquad \textbf{(D)}\ 28 \qquad \textbf{(E)}\ 42$


Problem 13

A telephone number has the form $ABC - DEF - GHIJ$, where each letter represents a different digit. The digits in each part of the numbers are in decreasing order; that is, $A > B > C$, $D > E > F$, and $G > H > I > J$. Furthermore, $D$, $E$, and $F$ are consecutive even digits; $G$, $H$, $I$, and $J$ are consecutive odd digits; and $A + B + C = 9$. Find $A$.

$\textbf{(A)} \ 4 \qquad \textbf{(B)} \ 5 \qquad \textbf{(C)} \ 6 \qquad \textbf{(D)} \ 7 \qquad \textbf{(E)} \ 8$


Problem 14

A charity sells $140$ benefit tickets for a total of $\textdollar2001$. Some tickets sell for full price (a whole dollar amount), and the rest sells for half price. How much money is raised by the full-price tickets?

$\text{(A) } \textdollar 782 \qquad \text{(B) } \textdollar 986 \qquad \text{(C) } \textdollar 1158 \qquad \text{(D) } \textdollar 1219 \qquad \text{(E) }\ \textdollar 1449$


Problem 15

A street has parallel curbs $40$ feet apart. A crosswalk bounded by two parallel stripes crosses the street at an angle. The length of the curb between the stripes is $15$ feet and each stripe is $50$ feet long. Find the distance, in feet, between the stripes.

$\textbf{(A)}\ 9 \qquad \textbf{(B)}\ 10 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 15 \qquad \textbf{(E)}\ 25$


Problem 16

The mean of three numbers is $10$ more than the least of the numbers and $15$ less than the greatest. The median of the three numbers is $5$. What is their sum?

$\textbf{(A)} \ 5 \qquad \textbf{(B)} \ 20 \qquad \textbf{(C)} \ 25 \qquad \textbf{(D)} \ 30 \qquad \textbf{(E)} \ 36$


Problem 17

Which of the cones listed below can be formed from a $252^\circ$ sector of a circle of radius $10$ by aligning the two straight sides?

[asy]import graph;unitsize(1.5cm);defaultpen(fontsize(8pt));draw(Arc((0,0),1,-72,180),linewidth(.8pt));draw(dir(288)--(0,0)--(-1,0),linewidth(.8pt));label("$10$",(-0.5,0),S);draw(Arc((0,0),0.1,-72,180));label("$252^{\circ}$",(0.05,0.05),NE);[/asy]

$\textbf{(A) } \text{A cone with slant height of 10 and radius 6}$

$\textbf{(B) } \text{A cone with height of 10 and radius 6}$

$\textbf{(C) } \text{A cone with slant height of 10 and radius 7}$

$\textbf{(D) } \text{A cone with height of 10 and radius 7}$

$\textbf{(E) } \text{A cone with slant height of 10 and radius 8}$


Problem 18

The plane is tiled by congruent squares and congruent pentagons as indicated. The percent of the plane that is enclosed by the pentagons is closest to

[asy] unitsize(3mm); defaultpen(linewidth(0.8pt)); path p1=(0,0)--(3,0)--(3,3)--(0,3)--(0,0); path p2=(0,1)--(1,1)--(1,0); path p3=(2,0)--(2,1)--(3,1); path p4=(3,2)--(2,2)--(2,3); path p5=(1,3)--(1,2)--(0,2); path p6=(1,1)--(2,2); path p7=(2,1)--(1,2); path[] p=p1^^p2^^p3^^p4^^p5^^p6^^p7; for(int i=0; i<3; ++i) { for(int j=0; j<3; ++j) { draw(shift(3*i,3*j)*p); } }[/asy]

$\textbf{(A)} \ 50 \qquad \textbf{(B)} \ 52 \qquad \textbf{(C)} \ 54 \qquad \textbf{(D)} \ 56 \qquad \textbf{(E)} \ 58 \qquad$


Problem 19

Pat wants to buy four donuts from an ample supply of three types of donuts: glazed, chocolate, and powdered. How many different selections are possible?

$\textbf{(A)}\ 6 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 12 \qquad \textbf{(D)}\ 15 \qquad \textbf{(E)}\ 18$


Problem 20

A regular octagon is formed by cutting an isosceles right triangle from each of the corners of a square with sides of length $2000$. What is the length of each side of the octagon?

$\textbf{(A) } \frac{1}{3}(2000) \qquad \textbf{(B) } {2000(\sqrt{2}-1)} \qquad \textbf{(C) } {2000(2-\sqrt{2})} \qquad \textbf{(D) } {1000} \qquad \textbf{(E) } {1000\sqrt{2}}$


Problem 21

A right circular cylinder with its diameter equal to its height is inscribed in a right circular cone. The cone has diameter $10$ and altitude $12$, and the axes of the cylinder and cone coincide. Find the radius of the cylinder.

$\textbf{(A)}\ \frac{8}3\qquad\textbf{(B)}\ \frac{30}{11}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ \frac{25}{8}\qquad\textbf{(E)}\ \frac{7}{2}$


Problem 22

In the magic square shown, the sums of the numbers in each row, column, and diagonal are the same. Five of these numbers are represented by $v$, $w$, $x$, $y$, and $z$. Find $y + z$.

[asy] unitsize(10mm); defaultpen(linewidth(1pt)); for(int i=0; i<=3; ++i) { draw((0,i)--(3,i)); draw((i,0)--(i,3)); } label("$25$",(0.5,0.5)); label("$z$",(1.5,0.5)); label("$21$",(2.5,0.5)); label("$18$",(0.5,1.5)); label("$x$",(1.5,1.5)); label("$y$",(2.5,1.5)); label("$v$",(0.5,2.5)); label("$24$",(1.5,2.5)); label("$w$",(2.5,2.5));  [/asy]

$\textbf{(A)}\ 43 \qquad \textbf{(B)}\ 44 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 46 \qquad \textbf{(E)}\ 47$


Problem 23

A box contains exactly five chips, three red and two white. Chips are randomly removed one at a time without replacement until all the red chips are drawn or all the white chips are drawn. What is the probability that the last chip drawn is white?

$\textbf{(A)}\ \frac{3}{10}\qquad\textbf{(B)}\ \frac{2}{5}\qquad\textbf{(C)}\ \frac{1}{2}\qquad\textbf{(D)}\ \frac{3}{5}\qquad\textbf{(E)}\ \frac{7}{10}$


Problem 24

In trapezoid $ABCD$, $\overline{AB}$ and $\overline{CD}$ are perpendicular to $\overline{AD}$, with $AB+CD=BC$, $AB<CD$, and $AD=7$. What is $AB\cdot CD$?

$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 12.25 \qquad \textbf{(C)}\ 12.5 \qquad \textbf{(D)}\ 12.75 \qquad \textbf{(E)}\ 13$


Problem 25

How many positive integers not exceeding $2001$ are multiples of $3$ or $4$ but not $5$?

$\textbf{(A)}\ 768 \qquad \textbf{(B)}\ 801 \qquad \textbf{(C)}\ 934 \qquad \textbf{(D)}\ 1067 \qquad \textbf{(E)}\ 1167$


See also

2001 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
2000 AMC 10
Followed by
2002 AMC 10A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS