Difference between revisions of "2011 AIME I Problems/Problem 8"
(→See also) |
m (→Problem: Fixed graphic error.) |
||
Line 3: | Line 3: | ||
− | + | [asy] | |
unitsize(1 cm); | unitsize(1 cm); | ||
pair translate; | pair translate; | ||
Line 34: | Line 34: | ||
draw (W[1]--C[1]--X[1]); | draw (W[1]--C[1]--X[1]); | ||
draw (Y[1]--B[1]--Z[1]); | draw (Y[1]--B[1]--Z[1]); | ||
− | dot("< | + | dot("<math>A</math>",A[0],N); |
− | dot("< | + | dot("<math>B</math>",B[0],SE); |
− | dot("< | + | dot("<math>C</math>",C[0],SW); |
− | dot("< | + | dot("<math>U</math>",U[0],NE); |
− | dot("< | + | dot("<math>V</math>",V[0],NW); |
− | dot("< | + | dot("<math>W</math>",W[0],NW); |
− | dot("< | + | dot("<math>X</math>",X[0],S); |
− | dot("< | + | dot("<math>Y</math>",Y[0],S); |
− | dot("< | + | dot("<math>Z</math>",Z[0],NE); |
dot(A[1]); | dot(A[1]); | ||
dot(B[1]); | dot(B[1]); | ||
dot(C[1]); | dot(C[1]); | ||
− | dot("< | + | dot("<math>U</math>",U[1],NE); |
− | dot("< | + | dot("<math>V</math>",V[1],NW); |
− | dot("< | + | dot("<math>W</math>",W[1],NW); |
− | dot("< | + | dot("<math>X</math>",X[1],dir(-70)); |
− | dot("< | + | dot("<math>Y</math>",Y[1],dir(250)); |
− | dot("< | + | dot("<math>Z</math>",Z[1],NE);[/asy] |
== See also == | == See also == | ||
{{AIME box|year=2011|n=I|num-b=7|num-a=9}} | {{AIME box|year=2011|n=I|num-b=7|num-a=9}} |
Revision as of 19:36, 3 April 2011
Problem
In triangle , , , and . Points and are on with on , points and are on with on , and points and are on with on . In addition, the points are positioned so that , , and . Right angle folds are then made along , , and . The resulting figure is placed on a level floor to make a table with triangular legs. Let be the maximum possible height of a table constructed from triangle whose top is parallel to the floor. Then can be written in the form , where and are relatively prime positive integers and is a positive integer that is not divisible by the square of any prime. Find .
[asy]
unitsize(1 cm);
pair translate;
pair[] A, B, C, U, V, W, X, Y, Z;
A[0] = (1.5,2.8);
B[0] = (3.2,0);
C[0] = (0,0);
U[0] = (0.69*A[0] + 0.31*B[0]);
V[0] = (0.69*A[0] + 0.31*C[0]);
W[0] = (0.69*C[0] + 0.31*A[0]);
X[0] = (0.69*C[0] + 0.31*B[0]);
Y[0] = (0.69*B[0] + 0.31*C[0]);
Z[0] = (0.69*B[0] + 0.31*A[0]);
translate = (7,0);
A[1] = (1.3,1.1) + translate;
B[1] = (2.4,-0.7) + translate;
C[1] = (0.6,-0.7) + translate;
U[1] = U[0] + translate;
V[1] = V[0] + translate;
W[1] = W[0] + translate;
X[1] = X[0] + translate;
Y[1] = Y[0] + translate;
Z[1] = Z[0] + translate;
draw (A[0]--B[0]--C[0]--cycle);
draw (U[0]--V[0],dashed);
draw (W[0]--X[0],dashed);
draw (Y[0]--Z[0],dashed);
draw (U[1]--V[1]--W[1]--X[1]--Y[1]--Z[1]--cycle);
draw (U[1]--A[1]--V[1],dashed);
draw (W[1]--C[1]--X[1]);
draw (Y[1]--B[1]--Z[1]);
dot("",A[0],N);
dot("",B[0],SE);
dot("",C[0],SW);
dot("",U[0],NE);
dot("",V[0],NW);
dot("",W[0],NW);
dot("",X[0],S);
dot("",Y[0],S);
dot("",Z[0],NE);
dot(A[1]);
dot(B[1]);
dot(C[1]);
dot("",U[1],NE);
dot("",V[1],NW);
dot("",W[1],NW);
dot("",X[1],dir(-70));
dot("",Y[1],dir(250));
dot("",Z[1],NE);[/asy]
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |