Difference between revisions of "2003 AMC 12A Problems/Problem 1"

(See Also)
(See Also)
Line 18: Line 18:
 
*[[2003 AMC 12A Problems]]
 
*[[2003 AMC 12A Problems]]
  
{{AMC12 box|year=2003|before=First<br />Question|num-a=2}}
+
{{AMC12 box|year=2003A|before=First<br />Question|num-a=2}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 23:07, 27 April 2011

Problem

What is the Difference between the sum of the first $2003$ even counting numbers and the sum of the first $2003$ odd counting numbers?

$\mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 2\qquad \mathrm{(D) \ } 2003\qquad \mathrm{(E) \ } 4006$

Solution

The first $2003$ even counting numbers are $2,4,6,...,4006$.

The first $2003$ odd counting numbers are $1,3,5,...,4005$.

Thus, the problem is asking for the value of $(2+4+6+...+4006)-(1+3+5+...+4005)$.

$(2+4+6+...+4006)-(1+3+5+...+4005) = (2-1)+(4-3)+(6-5)+...+(4006-4005)$

$= 1+1+1+...+1 = 2003 \Rightarrow D$

See Also

2003A AMC 12 (ProblemsAnswer KeyResources)
Preceded by
First
Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions