Difference between revisions of "2011 AMC 10B Problems/Problem 20"
(if someone could alter this very confusing solution...) |
|||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
− | + | Suppose that <math>P</math> is a point in the rhombus <math>ABCD</math> and let <math>\ell_{BC}</math> be the [[perpendicular bisector]] of <math>\overline{BC}</math>. Then <math>PB < PC</math> if and only if <math>P</math> is on the same side of <math>\ell_{BC}</math> as <math>B</math>. The line <math>\ell_{BC}</math> divides the plane into two half-planes; let <math>S_{BC}</math> be the half-plane containing <math>B</math>. Let us define similarly <math>\ell_{BD},S_{BD}</math> and <math>\ell_{BA},S_{BA}</math>. Then <math>R</math> is equal to <math>ABCD \cap S_{BC} \cap S_{BD} \cap S_{BA}</math>. The region turns out to be an irregular pentagon. We can make it easier to find the area of this region by dividing it into four triangles: | |
− | + | <asy> | |
unitsize(8mm); | unitsize(8mm); | ||
defaultpen(linewidth(0.8pt)+fontsize(10pt)); | defaultpen(linewidth(0.8pt)+fontsize(10pt)); | ||
dotfactor=4; | dotfactor=4; | ||
− | pair A=(4,0), B=(2,2sqrt(3)), C=(-2,2sqrt(3)), D=(0,0); | + | pair A=(4,0), B=(2,2sqrt(3)), C=(-2,2sqrt(3)), D=(0,0), E=(B+C)/2, F=(B+C+D)/3, G=(A+C)/2, H=(A+B+D)/3, I=(A+B)/2; |
fill((0,2sqrt(3))--B--(3,sqrt(3))--(2,(2sqrt(3))/3)--(0,(4sqrt(3))/3)--cycle,lightgray); | fill((0,2sqrt(3))--B--(3,sqrt(3))--(2,(2sqrt(3))/3)--(0,(4sqrt(3))/3)--cycle,lightgray); | ||
draw(A--B--C--D--cycle); | draw(A--B--C--D--cycle); | ||
− | draw(D--(0,2sqrt(3))); draw(D--(3,sqrt(3))); draw(A--C); | + | draw(D--(0,2sqrt(3))); draw(D--(3,sqrt(3))); draw(A--C); draw(F--B--H); draw(B--G); |
− | label("$A$",A,SE); | + | label("$A$",A,SE);label("$B$",B,NE);label("$C$",C,NW);label("$D$",D,SW); |
− | label("$B$",B,NE); | + | label("$E$",E,N);label("$F$",F,SW);label("$G$",G,SW);label("$H$",H,S);label("$I$",I,NE); |
− | label("$C$",C,NW); | + | label("$2$",(D--C),SW); |
− | label("$D$",D,SW); | + | </asy> |
− | label("$ | + | Since <math>\triangle BCD</math> and <math>\triangle BAD</math> are equilateral, <math>\ell_{BC}</math> contains <math>D</math>, <math>\ell_{BD}</math> contains <math>A</math> and <math>C</math>, and <math>\ell_{BA}</math> contains <math>D</math>. Then <math>\triangle BEF \cong \triangle BGF \cong \triangle BGH \cong \triangle BIH</math> with <math>BE = 1</math> and <math>EF = \frac{1}{\sqrt{3}}</math> so <math>[BEF] = \frac{1}{2}\cdot 1 \cdot \frac{\sqrt{3}}{3}</math> and <math>R</math> has area <math>\frac{2\sqrt{3}}{3}</math>. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | label("$ | ||
− | </asy | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
== See Also== | == See Also== | ||
{{AMC10 box|year=2011|ab=B|num-b=19|num-a=21}} | {{AMC10 box|year=2011|ab=B|num-b=19|num-a=21}} |
Revision as of 16:02, 5 June 2011
Problem
Rhombus has side length and °. Region consists of all points inside the rhombus that are closer to vertex than any of the other three vertices. What is the area of ?
Solution
Suppose that is a point in the rhombus and let be the perpendicular bisector of . Then if and only if is on the same side of as . The line divides the plane into two half-planes; let be the half-plane containing . Let us define similarly and . Then is equal to . The region turns out to be an irregular pentagon. We can make it easier to find the area of this region by dividing it into four triangles:
Since and are equilateral, contains , contains and , and contains . Then with and so and has area .
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |