Difference between revisions of "2006 AMC 12B Problems/Problem 15"
m |
Math Kirby (talk | contribs) (→Problem) |
||
Line 2: | Line 2: | ||
== Problem == | == Problem == | ||
− | {{problem}} | + | Circles with centers <math> O</math> and <math> P</math> have radii 2 and 4, respectively, and are externally tangent. Points <math> A</math> and <math> B</math> are on the circle centered at <math> O</math>, and points <math> C</math> and <math> D</math> are on the circle centered at <math> P</math>, such that <math> \overline{AD}</math> and <math> \overline{BC}</math> are common external tangents to the circles. What is the area of hexagon <math> AOBCPD</math>? |
+ | |||
+ | <asy> | ||
+ | // from amc10 problem series | ||
+ | unitsize(0.4 cm); defaultpen(linewidth(0.7) + fontsize(11)); | ||
+ | pair A, B, C, D; | ||
+ | pair[] O; | ||
+ | O[1] = (6,0); | ||
+ | O[2] = (12,0); | ||
+ | A = (32/6,8*sqrt(2)/6); | ||
+ | B = (32/6,-8*sqrt(2)/6); | ||
+ | C = 2*B; | ||
+ | D = 2*A; | ||
+ | draw(Circle(O[1],2)); | ||
+ | draw(Circle(O[2],4)); | ||
+ | draw((0.7*A)--(1.2*D)); | ||
+ | draw((0.7*B)--(1.2*C)); | ||
+ | draw(O[1]--O[2]); | ||
+ | draw(A--O[1]); | ||
+ | draw(B--O[1]); | ||
+ | draw(C--O[2]); | ||
+ | draw(D--O[2]); | ||
+ | label("$A$", A, NW); | ||
+ | label("$B$", B, SW); | ||
+ | label("$C$", C, SW); | ||
+ | label("$D$", D, NW); | ||
+ | dot("$O$", O[1], SE); | ||
+ | dot("$P$", O[2], SE); | ||
+ | label("$2$", (A + O[1])/2, E); | ||
+ | label("$4$", (D + O[2])/2, E);</asy> | ||
+ | |||
+ | <math> \textbf{(A) } 18\sqrt {3} \qquad \textbf{(B) } 24\sqrt {2} \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 24\sqrt {3} \qquad \textbf{(E) } 32\sqrt {2}</math> | ||
== Solution == | == Solution == |
Revision as of 22:14, 28 October 2011
This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.
Problem
Circles with centers and have radii 2 and 4, respectively, and are externally tangent. Points and are on the circle centered at , and points and are on the circle centered at , such that and are common external tangents to the circles. What is the area of hexagon ?
Solution
See also
2006 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |