Difference between revisions of "2000 AMC 12 Problems/Problem 21"

m (Solution: +img)
(duplicate)
Line 1: Line 1:
 +
{{duplicate|[[2000 AMC 12 Problems|2000 AMC 12 #21]] and [[2000 AMC 10 Problems|2000 AMC 10 #19]]}}
 +
 
== Problem ==
 
== Problem ==
 
Through a point on the [[hypotenuse]] of a [[right triangle]], lines are drawn [[parallel]] to the legs of the triangle so that the triangle is divided into a [[square]] and two smaller right triangles. The area of one of the two small right triangles is <math>m</math> times the area of the square. The [[ratio]] of the area of the other small right triangle to the area of the square is  
 
Through a point on the [[hypotenuse]] of a [[right triangle]], lines are drawn [[parallel]] to the legs of the triangle so that the triangle is divided into a [[square]] and two smaller right triangles. The area of one of the two small right triangles is <math>m</math> times the area of the square. The [[ratio]] of the area of the other small right triangle to the area of the square is  
Line 5: Line 7:
  
 
== Solution ==
 
== Solution ==
[[Image:2000_12_AMC-21.png]]
+
 
 +
<center><asy>
 +
unitsize(36);
 +
draw((0,0)--(6,0)--(0,3)--cycle);
 +
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle);
 +
label("$1$",(1,2),S);
 +
label("$1$",(2,1),W);
 +
label("$2m$",(4,0),S);
 +
label("$x$",(0,2.5),W);
 +
</asy></center>
  
 
[[Without loss of generality]] let a side of the square be <math>1</math>. Simple angle chasing shows that the two right triangles are [[similar triangles|similar]]. Thus the ratio of the sides of the triangles are the same. Since <math>A = \frac{1}{2}bh = \frac{h}{2}</math>, the height of the triangle with area <math>m</math> is <math>2m</math>. Therefore <math>\frac{2m}{1} = \frac{1}{x}</math> where <math>x</math> is the base of the other triangle. <math>x = \frac{1}{2m}</math>, and the area of that triangle is <math>\frac{1}{2} \cdot 1 \cdot \frac{1}{2m} = \frac{1}{4m}\ \text{(D)}</math>.
 
[[Without loss of generality]] let a side of the square be <math>1</math>. Simple angle chasing shows that the two right triangles are [[similar triangles|similar]]. Thus the ratio of the sides of the triangles are the same. Since <math>A = \frac{1}{2}bh = \frac{h}{2}</math>, the height of the triangle with area <math>m</math> is <math>2m</math>. Therefore <math>\frac{2m}{1} = \frac{1}{x}</math> where <math>x</math> is the base of the other triangle. <math>x = \frac{1}{2m}</math>, and the area of that triangle is <math>\frac{1}{2} \cdot 1 \cdot \frac{1}{2m} = \frac{1}{4m}\ \text{(D)}</math>.
Line 11: Line 22:
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2000|num-b=20|num-a=22}}
 
{{AMC12 box|year=2000|num-b=20|num-a=22}}
 +
{{AMC10 box|year=2000|num-b=18|num-a=20}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 23:57, 26 November 2011

The following problem is from both the 2000 AMC 12 #21 and 2000 AMC 10 #19, so both problems redirect to this page.

Problem

Through a point on the hypotenuse of a right triangle, lines are drawn parallel to the legs of the triangle so that the triangle is divided into a square and two smaller right triangles. The area of one of the two small right triangles is $m$ times the area of the square. The ratio of the area of the other small right triangle to the area of the square is

$\text {(A)}\ \frac{1}{2m+1} \qquad \text {(B)}\ m \qquad \text {(C)}\ 1-m \qquad \text {(D)}\ \frac{1}{4m} \qquad \text {(E)}\ \frac{1}{8m^2}$

Solution

[asy] unitsize(36); draw((0,0)--(6,0)--(0,3)--cycle); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); label("$1$",(1,2),S); label("$1$",(2,1),W); label("$2m$",(4,0),S); label("$x$",(0,2.5),W); [/asy]

Without loss of generality let a side of the square be $1$. Simple angle chasing shows that the two right triangles are similar. Thus the ratio of the sides of the triangles are the same. Since $A = \frac{1}{2}bh = \frac{h}{2}$, the height of the triangle with area $m$ is $2m$. Therefore $\frac{2m}{1} = \frac{1}{x}$ where $x$ is the base of the other triangle. $x = \frac{1}{2m}$, and the area of that triangle is $\frac{1}{2} \cdot 1 \cdot \frac{1}{2m} = \frac{1}{4m}\ \text{(D)}$.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions