Difference between revisions of "2011 AMC 12B Problems/Problem 20"
m (Created page with '==Problem== Triangle <math>ABC</math> has <math>AB = 13, BC = 14</math>, and <math>AC = 15</math>. The points <math>D, E</math>, and <math>F</math> are the midpoints of <math>\o…') |
(→Solution) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}</math> | <math>\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}</math> | ||
− | ==Solution== | + | ==Solution 1== |
Answer: (C) | Answer: (C) | ||
Line 25: | Line 25: | ||
and <math>XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\frac{195}{8}</math> | and <math>XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\frac{195}{8}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | Consider an additional circumcircle on <math>\triangle ADF</math>. After drawing the diagram, it is noticed that each triangle has side values: <math>7</math>, <math>\frac{15}{2}</math>, <math>\frac{13}{2}</math>. Thus they are congruent, and their respective circumcircles are. By inspection, we see that <math>XA</math>, <math>XB</math>, and <math>XC</math> are the circumdiameters, and so they are congruent. Therefore, the solution can be found by calculating one of these circumdiameters and multiplying it by a factor of <math>3</math>. We can find the circumradius quite easily with the formula <math>\sqrt{(s)(s-a)(s-b)(s-c)} = \frac{abc{4R}</math>, s.t. <math>s=\frac{a+b+c}{2}</math> and R is the circumradius. Since <math>s = \frac{21}{2}</math>: | ||
+ | |||
+ | <cmath> \sqrt{(\frac{21}{2})(4)(3)(\frac{7}{2})} = \frac{\frac{15}{2}\cdot\frac{13}{2}\cdot 7}{4R} </cmath> | ||
+ | |||
+ | After a few algebraic manipulations: | ||
+ | |||
+ | <math>\Rightarrow R = \frac{65}{16} \Rightarrow D=2R=\frac{65}{8} \Rightarrow 3D = \boxed{\frac{195}{8}}</math>. | ||
+ | |||
== See also == | == See also == | ||
{{AMC12 box|year=2011|num-b=19|num-a=21|ab=B}} | {{AMC12 box|year=2011|num-b=19|num-a=21|ab=B}} |
Revision as of 02:09, 3 January 2012
Contents
Problem
Triangle has , and . The points , and are the midpoints of , and respectively. Let be the intersection of the circumcircles of and . What is ?
Solution 1
Answer: (C)
Let us also consider the circumcircle of .
Note that if we draw the perpendicular bisector of each side, we will have the circumcenter of which is , Also, since . is cyclic, similarly, and are also cyclic. With this, we know that the circumcircles of , and all intercept at , so is .
The question now becomes calculate the sum of distance from each vertices to the circumcenter.
We can do it will coordinate geometry, note that because of being circumcenter.
Let , , ,
Then is on the line and also the line with slope and passes through .
So
and
Solution 2
Consider an additional circumcircle on . After drawing the diagram, it is noticed that each triangle has side values: , , . Thus they are congruent, and their respective circumcircles are. By inspection, we see that , , and are the circumdiameters, and so they are congruent. Therefore, the solution can be found by calculating one of these circumdiameters and multiplying it by a factor of . We can find the circumradius quite easily with the formula $\sqrt{(s)(s-a)(s-b)(s-c)} = \frac{abc{4R}$ (Error compiling LaTeX. Unknown error_msg), s.t. and R is the circumradius. Since :
After a few algebraic manipulations:
.
See also
2011 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |