Difference between revisions of "2004 AMC 12A Problems/Problem 19"
(→Solution) |
(→Solution) |
||
Line 20: | Line 20: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | === Solution 1 === | ||
+ | |||
<center><asy> | <center><asy> | ||
unitsize(15mm); | unitsize(15mm); | ||
Line 72: | Line 75: | ||
0 &= 36r^2 - 32r \\ | 0 &= 36r^2 - 32r \\ | ||
r &= \frac{32}{36} = \frac{8}{9} \Longrightarrow \qquad \textbf{(D)} \end{align*}</cmath> | r &= \frac{32}{36} = \frac{8}{9} \Longrightarrow \qquad \textbf{(D)} \end{align*}</cmath> | ||
+ | |||
+ | === Solution 2 === | ||
+ | |||
+ | We can apply [[Descartes' Circle Formula]]. | ||
+ | |||
+ | The four circles have curvatures <math>-\frac{1}{2}, 1, \frac{1}{r}</math>, and <math>\frac{1}{r}</math>. | ||
+ | |||
+ | We have <math>2((-\frac{1}{2})^2+1^2+\frac {1}{r^2}+\frac{1}{r^2})=(-\frac{1}{2}+1+\frac{1}{r}+\frac{1}{r})^2</math> | ||
+ | |||
+ | Simplifying, we get <math>\frac{10}{4}+\frac{4}{r^2}=\frac{1}{4}+\frac{2}{r}+\frac{4}{r^2}</math> | ||
+ | |||
+ | <math>\frac{2}{r}=\frac{9}{4}</math> | ||
+ | |||
+ | <math>r=\frac{8}{9} \Longrightarrow \qquad \textbf{(D)}</math> | ||
==See Also== | ==See Also== |
Revision as of 14:15, 29 January 2012
Problem 19
Circles and are externally tangent to each other, and internally tangent to circle . Circles and are congruent. Circle has radius and passes through the center of . What is the radius of circle ?
Solution
Solution 1
Note that since is the center of the larger circle of radius . Using the Pythagorean Theorem on ,
Now using the Pythagorean Theorem on ,
Substituting ,
Solution 2
We can apply Descartes' Circle Formula.
The four circles have curvatures , and .
We have
Simplifying, we get
See Also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |