Difference between revisions of "2012 AIME II Problems/Problem 11"

(Created page with "== Problem 11 == Let <math>f_1(x) = \frac23 - \frac3{3x+1}</math>, and for <math>n \ge 2</math>, define <math>f_n(x) = f_1(f_{n-1}(x))</math>. The value of <math>x</math> that sa...")
 
Line 1: Line 1:
 
== Problem 11 ==
 
== Problem 11 ==
 
Let <math>f_1(x) = \frac23 - \frac3{3x+1}</math>, and for <math>n \ge 2</math>, define <math>f_n(x) = f_1(f_{n-1}(x))</math>. The value of <math>x</math> that satisfies <math>f_{1001}(x) = x-3</math> can be expressed in the form <math>\frac mn</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 
Let <math>f_1(x) = \frac23 - \frac3{3x+1}</math>, and for <math>n \ge 2</math>, define <math>f_n(x) = f_1(f_{n-1}(x))</math>. The value of <math>x</math> that satisfies <math>f_{1001}(x) = x-3</math> can be expressed in the form <math>\frac mn</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 +
 +
== Solution ==
 +
 +
== See also ==
 +
{{AIME box|year=2012|n=II|num-b=10|num-a=12}}

Revision as of 16:21, 31 March 2012

Problem 11

Let $f_1(x) = \frac23 - \frac3{3x+1}$, and for $n \ge 2$, define $f_n(x) = f_1(f_{n-1}(x))$. The value of $x$ that satisfies $f_{1001}(x) = x-3$ can be expressed in the form $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.


Solution

See also

2012 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions