Difference between revisions of "2012 AIME II Problems/Problem 12"
Williamhu888 (talk | contribs) (Created page with "== Problem 12 == For a positive integer <math>p</math>, define the positive integer <math>n</math> to be <math>p</math>''-safe'' if <math>n</math> differs in absolute value by mo...") |
|||
Line 1: | Line 1: | ||
== Problem 12 == | == Problem 12 == | ||
For a positive integer <math>p</math>, define the positive integer <math>n</math> to be <math>p</math>''-safe'' if <math>n</math> differs in absolute value by more than <math>2</math> from all multiples of <math>p</math>. For example, the set of <math>10</math>-safe numbers is <math>\{ 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 23, \ldots\}</math>. Find the number of positive integers less than or equal to <math>10,000</math> which are simultaneously <math>7</math>-safe, <math>11</math>-safe, and <math>13</math>-safe. | For a positive integer <math>p</math>, define the positive integer <math>n</math> to be <math>p</math>''-safe'' if <math>n</math> differs in absolute value by more than <math>2</math> from all multiples of <math>p</math>. For example, the set of <math>10</math>-safe numbers is <math>\{ 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 23, \ldots\}</math>. Find the number of positive integers less than or equal to <math>10,000</math> which are simultaneously <math>7</math>-safe, <math>11</math>-safe, and <math>13</math>-safe. | ||
+ | |||
+ | |||
+ | == Solution == | ||
+ | |||
+ | == See also == | ||
+ | {{AIME box|year=2012|n=II|num-b=11|num-a=13}} |
Revision as of 16:21, 31 March 2012
Problem 12
For a positive integer , define the positive integer to be -safe if differs in absolute value by more than from all multiples of . For example, the set of -safe numbers is . Find the number of positive integers less than or equal to which are simultaneously -safe, -safe, and -safe.
Solution
See also
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |