Difference between revisions of "2012 AIME II Problems/Problem 15"
(→Solution) |
(→Solution) |
||
Line 23: | Line 23: | ||
Finally, we plug this into equation (1), yielding: | Finally, we plug this into equation (1), yielding: | ||
− | <math>8^2 = AF^2 + \frac{49}{225} \cdot AF^2 - 2 \cdot AF \cdot \frac{7AF}{15} | + | <math>8^2 = AF^2 + \frac{49}{225} \cdot AF^2 - 2 \cdot AF \cdot \frac{7AF}{15} \cdot \frac{-1}{7}</math> Thus, |
<math>64 = \frac{AF^2}{225} \cdot (225+49+30),</math> or <math>AF^2 = \frac{900}{19}.</math> The answer is <math>919</math>. | <math>64 = \frac{AF^2}{225} \cdot (225+49+30),</math> or <math>AF^2 = \frac{900}{19}.</math> The answer is <math>919</math>. |
Revision as of 00:05, 18 April 2012
Problem 15
Triangle is inscribed in circle with , , and . The bisector of angle meets side at and circle at a second point . Let be the circle with diameter . Circles and meet at and a second point . Then , where and are relatively prime positive integers. Find .
Solution
Use angle bisector theorem to find , , and . Use Power of the Point to find , and so . Use law of cosines to find , hence as well, and is equilateral, so .
I'm sure there is a more elegant solution from here, but instead we do'll some hairy law of cosines:
(1)
Adding these two and simplifying we get:
(2). Ah, but (since F lies on the same circle), and we can find using the law of cosines:
, and plugging in we get .
Also, , and (since is on the circle with diameter ), so .
Plugging in all our values into equation (2), we get:
, or .
Finally, we plug this into equation (1), yielding:
Thus,
or The answer is .
See Also
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |