Difference between revisions of "2000 USAMO Problems/Problem 6"
(Credit for this solution goes to Ravi Boppana.) |
m (→See Also) |
||
Line 45: | Line 45: | ||
{{USAMO newbox|year=2000|num-b=5|after=Last Question}} | {{USAMO newbox|year=2000|num-b=5|after=Last Question}} | ||
+ | [[Category:Olympiad Algebra Problems]] | ||
[[Category:Olympiad Inequality Problems]] | [[Category:Olympiad Inequality Problems]] |
Revision as of 11:02, 17 September 2012
Problem
Let be nonnegative real numbers. Prove that
Solution
Credit for this solution goes to Ravi Boppana.
Lemma 1: If are non-negative reals and are reals, then
Proof: Without loss of generality assume that the sequence is increasing. For convenience, define . The LHS of our inequality becomes
This expression is equivalent to the sum
Each term in the summation is non-negative, so the sum itself is non-negative.
We now define . If , then let be any non-negative number. Define $x_i=\sgn(a_i-b_i)\min(a_i,b_i)$ (Error compiling LaTeX. Unknown error_msg).
Lemma 2:
Proof: Switching the signs of and preserves inequality, so we may assume that . Similarly, we can assume that . If , then both sides are zero, so we may assume that and are positive. We then have from the definitions of and that
This means that
This concludes the proof of Lemma 2.
We can then apply Lemma 2 and Lemma 1 in order to get that
This implies the desired inequality.
See Also
2000 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |