Difference between revisions of "1998 AJHSME Problems/Problem 12"
Talkinaway (talk | contribs) (→See also) |
m (→Problem 12) |
||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
<math>2\left(1-\dfrac{1}{2}\right) + 3\left(1-\dfrac{1}{3}\right) + 4\left(1-\dfrac{1}{4}\right) + \cdots + 10\left(1-\dfrac{1}{10}\right)=</math> | <math>2\left(1-\dfrac{1}{2}\right) + 3\left(1-\dfrac{1}{3}\right) + 4\left(1-\dfrac{1}{4}\right) + \cdots + 10\left(1-\dfrac{1}{10}\right)=</math> |
Revision as of 11:50, 23 December 2012
Problem
Solution
Taking the first product, we have
Looking at the second, we get
We seem to be going up by .
Just to check,
Now that we have discovered the pattern, we have to find the last term.
The sum of all numbers from to is
See also
1998 AJHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |