Difference between revisions of "2013 AMC 12B Problems/Problem 18"
m (→Solution) |
|||
Line 21: | Line 21: | ||
<math>\textbf{2014 coins:}</math> | <math>\textbf{2014 coins:}</math> | ||
− | If Jenna moves first, she will take <math>1</math> coin, leaving <math>2013</math> coins, and she wins as shown above. If Barbara moves first, she can take <math>4</math> coins, leaving <math>2010</math>. After every move by Jenna, Barbara will then take the number of coins that makes the total taken in that round <math>5</math>. Since <math>2010=0\text{(mod } | + | If Jenna moves first, she will take <math>1</math> coin, leaving <math>2013</math> coins, and she wins as shown above. If Barbara moves first, she can take <math>4</math> coins, leaving <math>2010</math>. After every move by Jenna, Barbara will then take the number of coins that makes the total taken in that round <math>5</math>. Since <math>2010=0\text{(mod }5)</math>, it will be Jenna's turn with <math>5</math> coins left, so |
Barbara will win. In this case, whoever moves first wins. | Barbara will win. In this case, whoever moves first wins. | ||
Revision as of 17:57, 22 February 2013
Problem
Barbara and Jenna play the following game, in which they take turns. A number of coins lie on a table. When it is Barbara’s turn, she must remove or coins, unless only one coin remains, in which case she loses her turn. What it is Jenna’s turn, she must remove or coins. A coin flip determines who goes first. Whoever removes the last coin wins the game. Assume both players use their best strategy. Who will win when the game starts with coins and when the game starts with coins?
Barbara will win with coins and Jenna will win with coins.
Jenna will win with coins, and whoever goes first will win with coins.
Barbara will win with coins, and whoever goes second will win with coins.
Jenna will win with coins, and Barbara will win with coins.
Whoever goes first will win with coins, and whoever goes second will win with coins.
Solution
We spit into 2 cases: 2013 coins, and 2014 coins.
Notice that when there are coins left, whoever moves first loses, as they must leave an amount of coins the other person can take. If Jenna goes first, she can take coins. Then, whenever Barbara takes coins, Jenna will take the amount that makes the total coins taken in that round . (For instance, if Barbara takes coins, Jenna will take ). Eventually, since it will be Barbara's move with coins remaining, so she will lose. If Barbara goes first, on each round, Jenna will take the amount of coins that makes the total coins taken on that round . Since , it will be Barbara's move with coins remaining, so she will have two take coins, allowing Jenna to take the last coin. Therefore, Jenna will win with coins.
If Jenna moves first, she will take coin, leaving coins, and she wins as shown above. If Barbara moves first, she can take coins, leaving . After every move by Jenna, Barbara will then take the number of coins that makes the total taken in that round . Since , it will be Jenna's turn with coins left, so Barbara will win. In this case, whoever moves first wins.
Based on this, the answer is
See also
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |