Difference between revisions of "2013 AMC 10B Problems/Problem 22"
(→Solution) |
|||
Line 51: | Line 51: | ||
Thus, there are <math>16(24) = 384</math> ways for each possible J value. There are <math>3</math> possible J values that still preserve symmetry: <math>384(3) = \boxed{\textbf{(C) }1152}</math> | Thus, there are <math>16(24) = 384</math> ways for each possible J value. There are <math>3</math> possible J values that still preserve symmetry: <math>384(3) = \boxed{\textbf{(C) }1152}</math> | ||
+ | == See also == | ||
+ | {{AMC10 box|year=2013|ab=B|num-b=21|num-a=23}} |
Revision as of 16:05, 27 March 2013
Problem
The regular octagon has its center at . Each of the vertices and the center are to be associated with one of the digits through , with each digit used once, in such a way that the sums of the numbers on the lines , , , and are all equal. In how many ways can this be done?
Solution
First of all, note that must be , , or to preserve symmetry. We also notice that .
WLOG assume that . Thus the pairs of vertices must be and , and , and , and and . There are ways to assign these to the vertices. Furthermore, there are ways to switch them (i.e. do instead of ).
Thus, there are ways for each possible J value. There are possible J values that still preserve symmetry:
See also
2013 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |