Difference between revisions of "2009 AMC 10B Problems/Problem 18"
(New page: == Problem == Rectangle <math>ABCD</math> has <math>AB=8</math> and <math>BC=6</math>. Point <math>M</math> is the midpoint of diagonal <math>\overline{AC}</math>, and <math>E</math> is o...) |
|||
Line 47: | Line 47: | ||
{{AMC10 box|year=2009|ab=B|num-b=17|num-a=19}} | {{AMC10 box|year=2009|ab=B|num-b=17|num-a=19}} | ||
+ | {{MAA Notice}} |
Revision as of 11:54, 4 July 2013
Problem
Rectangle has and . Point is the midpoint of diagonal , and is on with . What is the area of ?
Solution
By the Pythagorean theorem we have , hence .
The triangles and have the same angle at and a right angle, thus all their angles are equal, and therefore these two triangles are similar.
The ratio of their sides is , hence the ratio of their areas is .
And as the area of triangle is , the area of triangle is .
See Also
2009 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.