Difference between revisions of "2008 AIME I Problems/Problem 14"
m (→Solution 1) |
|||
Line 69: | Line 69: | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 19:19, 4 July 2013
Problem
Let be a diameter of circle . Extend through to . Point lies on so that line is tangent to . Point is the foot of the perpendicular from to line . Suppose , and let denote the maximum possible length of segment . Find .
Solution
Solution 1
Let . Since , it follows easily that . Thus . By the Law of Cosines on , where , so: Let ; this is a quadratic, and its discriminant must be nonnegative: . Thus, Equality holds when .
Solution 2
From the diagram, we see that , and that .
This is a quadratic equation, maximized when . Thus, .
See also
2008 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.