Difference between revisions of "2000 AMC 12 Problems/Problem 13"

(Solution)
(Solution)
Line 10: Line 10:
 
<cmath>\left(\frac{c}{6} + \frac{m}{4}\right)p = c + m</cmath>
 
<cmath>\left(\frac{c}{6} + \frac{m}{4}\right)p = c + m</cmath>
 
Regrouping, we get <math>2c(6-p)=3m(p-4)</math>. Since both <math>c,m</math> are positive, it follows that <math>6-p,p-4</math> are also positive, which is only possible when <math>p = 5\ \mathrm{(C)}</math>.
 
Regrouping, we get <math>2c(6-p)=3m(p-4)</math>. Since both <math>c,m</math> are positive, it follows that <math>6-p,p-4</math> are also positive, which is only possible when <math>p = 5\ \mathrm{(C)}</math>.
 +
  
 
Alternatively, one could notice that since there are only two components to the mixture Angela must have more than her "fair share" of milk and less then her "fair share" of coffee in order to ensure that everyone has 8 ounces.  The "fair share" is 1/p.  So,
 
Alternatively, one could notice that since there are only two components to the mixture Angela must have more than her "fair share" of milk and less then her "fair share" of coffee in order to ensure that everyone has 8 ounces.  The "fair share" is 1/p.  So,
Line 15: Line 16:
 
<cmath>\frac{1}{6} < \frac{1}{p}<\frac{1}{4}</cmath>
 
<cmath>\frac{1}{6} < \frac{1}{p}<\frac{1}{4}</cmath>
  
Which requires that p be 5, since p is a whole number.
+
Which requires that p be 5, since p is a whole number. (C)
  
 
== See also ==
 
== See also ==

Revision as of 12:03, 15 July 2013

The following problem is from both the 2000 AMC 12 #13 and 2000 AMC 10 #22, so both problems redirect to this page.

Problem

One morning each member of Angela’s family drank an 8-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family?

$\text {(A)}\ 3 \qquad \text {(B)}\ 4 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 6 \qquad \text {(E)}\ 7$

Solution

Let $c$ be the total amount of coffee, $m$ of milk, and $p$ the number of people in the family. Then each person drinks the same total amount of coffee and milk (8 ounces), so \[\left(\frac{c}{6} + \frac{m}{4}\right)p = c + m\] Regrouping, we get $2c(6-p)=3m(p-4)$. Since both $c,m$ are positive, it follows that $6-p,p-4$ are also positive, which is only possible when $p = 5\ \mathrm{(C)}$.


Alternatively, one could notice that since there are only two components to the mixture Angela must have more than her "fair share" of milk and less then her "fair share" of coffee in order to ensure that everyone has 8 ounces. The "fair share" is 1/p. So,

\[\frac{1}{6} < \frac{1}{p}<\frac{1}{4}\]

Which requires that p be 5, since p is a whole number. (C)

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png