Difference between revisions of "2012 AMC 10A Problems/Problem 15"
(→Solution 3) |
(→Solution 3) |
||
Line 102: | Line 102: | ||
Thus, <math>[ABC]=\frac{1}{2} \cdot {AB} \cdot {CG}=\frac{1}{2} \cdot 1 \cdot 0.4=0.2=\frac{1}{5}</math>. The answer is <math>(\text{B})</math>. | Thus, <math>[ABC]=\frac{1}{2} \cdot {AB} \cdot {CG}=\frac{1}{2} \cdot 1 \cdot 0.4=0.2=\frac{1}{5}</math>. The answer is <math>(\text{B})</math>. | ||
− | |||
− | |||
− | |||
− | |||
<center><asy> | <center><asy> | ||
unitsize(2cm); | unitsize(2cm); | ||
Line 141: | Line 137: | ||
Thus, <math>[ABC]=\frac{1}{2} \cdot {AB} \cdot {CG}=\frac{1}{2} \cdot 1 \cdot \frac{2}{5}=\frac{1}{5}</math>. | Thus, <math>[ABC]=\frac{1}{2} \cdot {AB} \cdot {CG}=\frac{1}{2} \cdot 1 \cdot \frac{2}{5}=\frac{1}{5}</math>. | ||
The answer is <math>(\text{B})</math> | The answer is <math>(\text{B})</math> | ||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2012|ab=A|num-b=14|num-a=16}} | ||
+ | {{MAA Notice}} |
Revision as of 12:20, 15 October 2013
Contents
Problem
Three unit squares and two line segments connecting two pairs of vertices are shown. What is the area of ?
Solution 1
intersects at a right angle, so . The hypotenuse of right triangle BED is .
Since AC=2BC, . is a right triangle so the area is just
Solution 2
Let be the origin. Then,
$\widebar{EB}$ (Error compiling LaTeX. Unknown error_msg) can be represented by the line Also, can be represented by the line
Subtracting the second equation from the first gives us . Thus, . Plugging this into the first equation gives us .
Since , is ,
and .
Thus, . The answer is .
Triangle is similar to triangle ; line
Triangle is similar to triangle and the ratio of line to line .
Based on similarity the length of the height of is thus .
Thus, . The answer is
See Also
2012 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.