Difference between revisions of "2013 AMC 8 Problems/Problem 18"
Lord.of.AMC (talk | contribs) (→Problem) |
Lord.of.AMC (talk | contribs) (→Solution) |
||
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | There are <math>10 \cdot 12 = 120</math> cubes on the base of the box. Then, for each of the 4 layers above the bottom (as since each cube is 1 foot by 1 foot by 1 foot and the box is 5 feet tall, there are 4 feet left), there are <math>9 + 11 + 9 + 11 = 40</math> cubes. Hence, the answer is <math>120 + 4 \cdot 40 = \boxed{\textbf{(B)}\ 280}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2013|num-b=17|num-a=19}} | {{AMC8 box|year=2013|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:56, 27 November 2013
Problem
Isabella uses one-foot cubical blocks to build a rectangular fort that is 12 feet long, 10 feet wide, and 5 feet high. The floor and the four walls are all one foot thick. How many blocks does the fort contain?
[asy here]
Solution
There are cubes on the base of the box. Then, for each of the 4 layers above the bottom (as since each cube is 1 foot by 1 foot by 1 foot and the box is 5 feet tall, there are 4 feet left), there are cubes. Hence, the answer is .
See Also
2013 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.