Difference between revisions of "2003 AMC 12B Problems/Problem 18"

Line 11: Line 11:
  
 
<math>10000 \leq n \leq 99999</math>, so there are <math>\left\lfloor\frac{99999}{11}\right\rfloor-\left\lceil\frac{10000}{11}\right\rceil+1 = \boxed{8181}</math> values of <math>q+r</math> that are divisible by <math>11 \Rightarrow {B}</math>.
 
<math>10000 \leq n \leq 99999</math>, so there are <math>\left\lfloor\frac{99999}{11}\right\rfloor-\left\lceil\frac{10000}{11}\right\rceil+1 = \boxed{8181}</math> values of <math>q+r</math> that are divisible by <math>11 \Rightarrow {B}</math>.
 +
 +
== See Also==
 +
{{AMC12 box|year=2003|ab=B|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:09, 5 January 2014

Problem

Let $n$ be a 5-digit number, and let $q$ and $r$ be the quotient and remainder, respectively, when $n$ is divided by $100$. For how many values of $n$ is $q+r$ divisible by $11$?

$\mathrm{(A) \ } 8180\qquad \mathrm{(B) \ } 8181\qquad \mathrm{(C) \ } 8182\qquad \mathrm{(D) \ } 9000\qquad \mathrm{(E) \ } 9090$

Solution

Suppose $n = 100\cdot q + r = 99\cdot q + (q+r)$

Since $11|(q+r)$ and $11|99q$, $11|n$

$10000 \leq n \leq 99999$, so there are $\left\lfloor\frac{99999}{11}\right\rfloor-\left\lceil\frac{10000}{11}\right\rceil+1 = \boxed{8181}$ values of $q+r$ that are divisible by $11 \Rightarrow {B}$.

See Also

2003 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png