Difference between revisions of "2012 AMC 10A Problems/Problem 22"

(Solution 1)
Line 13: Line 13:
 
Use the quadratic formula: <math>n = \frac{-1 + \sqrt{1 - 4(212 - m^2)}}{2}</math>. <math>n</math> is clearly an integer, so <math>1 - 4(212 - m^2) = 4m^2 - 847</math> must be not only a perfect square, but also an odd perfect square. This is because the entire expression must be an integer, and for the numerator to be even (divisible by 2), <math>4m^2 - 847</math> must be odd.
 
Use the quadratic formula: <math>n = \frac{-1 + \sqrt{1 - 4(212 - m^2)}}{2}</math>. <math>n</math> is clearly an integer, so <math>1 - 4(212 - m^2) = 4m^2 - 847</math> must be not only a perfect square, but also an odd perfect square. This is because the entire expression must be an integer, and for the numerator to be even (divisible by 2), <math>4m^2 - 847</math> must be odd.
  
Let <math>x</math> = <math>\sqrt{4m^2 - 847}</math>. (Note that this means that <math>n = \frac{-1 + x}{2}</math>.) This can be rewritten as <math>x^2 = 4m^2 - 847</math>, which can then be rewritten to <math>4m^2 - x^2 = 847</math>. Factor the left side by using the difference of squares. <math>(2m + x)(2m - x) = 847 = 7*11^2</math>.
+
Let <math>x</math> = <math>\sqrt{4m^2 - 847}</math>. (Note that this means that <math>n = \frac{-1 + x}{2}</math>.) This can be rewritten as <math>x^2 = 4m^2 - 847</math>, which can then be rewritten to <math>4m^2 - x^2 = 847</math>. Factor the left side by using the difference of squares. <math>(2m + x)(2m - x) = 847 = 7\cdot11^2</math>.
  
Our goal is to find possible values for <math>x</math>, then use the equation above to find <math>n</math>. The difference between the factors is <math>(2m + x) - (2m - x) = 2m + x - 2m + x = 2x.</math> We have three pairs of factors, <math>847*1, 7*121,</math> and <math>11*77</math>. The differences between these factors are <math>846</math>, <math>114</math>, and <math>66</math> - those are all possible values for <math>2a</math>. Thus the possibilities for <math>x</math> are <math>423</math>, <math>57</math>, and <math>33</math>.  
+
Our goal is to find possible values for <math>x</math>, then use the equation above to find <math>n</math>. The difference between the factors is <math>(2m + x) - (2m - x) = 2m + x - 2m + x = 2x.</math> We have three pairs of factors, <math>847\cdot1, 7\cdot121,</math> and <math>11\cdot77</math>. The differences between these factors are <math>846</math>, <math>114</math>, and <math>66</math> - those are all possible values for <math>2a</math>. Thus the possibilities for <math>x</math> are <math>423</math>, <math>57</math>, and <math>33</math>.  
  
 
Now plug in these values into the equation <math>n = \frac{-1 + x}{2}</math>. <math>n</math> can equal <math>211</math>, <math>28</math>, or <math>16</math>. Add <math>211 + 28 + 16 = 255</math>. The answer is <math>\boxed{\textbf{(A)}\ 255}</math>.
 
Now plug in these values into the equation <math>n = \frac{-1 + x}{2}</math>. <math>n</math> can equal <math>211</math>, <math>28</math>, or <math>16</math>. Add <math>211 + 28 + 16 = 255</math>. The answer is <math>\boxed{\textbf{(A)}\ 255}</math>.

Revision as of 23:02, 20 January 2014

Problem

The sum of the first $m$ positive odd integers is 212 more than the sum of the first $n$ positive even integers. What is the sum of all possible values of $n$?

$\textbf{(A)}\ 255\qquad\textbf{(B)}\ 256\qquad\textbf{(C)}\ 257\qquad\textbf{(D)}\ 258\qquad\textbf{(E)}\ 259$

Solution 1

The sum of the first $m$ odd integers is given by $m^2$. The sum of the first $n$ even integers is given by $n(n+1)$.

Thus, $m^2 = n^2 + n + 212$. Since we want to solve for n, rearrange as a quadratic equation: $n^2 + n + (212 - m^2) = 0$.

Use the quadratic formula: $n = \frac{-1 + \sqrt{1 - 4(212 - m^2)}}{2}$. $n$ is clearly an integer, so $1 - 4(212 - m^2) = 4m^2 - 847$ must be not only a perfect square, but also an odd perfect square. This is because the entire expression must be an integer, and for the numerator to be even (divisible by 2), $4m^2 - 847$ must be odd.

Let $x$ = $\sqrt{4m^2 - 847}$. (Note that this means that $n = \frac{-1 + x}{2}$.) This can be rewritten as $x^2 = 4m^2 - 847$, which can then be rewritten to $4m^2 - x^2 = 847$. Factor the left side by using the difference of squares. $(2m + x)(2m - x) = 847 = 7\cdot11^2$.

Our goal is to find possible values for $x$, then use the equation above to find $n$. The difference between the factors is $(2m + x) - (2m - x) = 2m + x - 2m + x = 2x.$ We have three pairs of factors, $847\cdot1, 7\cdot121,$ and $11\cdot77$. The differences between these factors are $846$, $114$, and $66$ - those are all possible values for $2a$. Thus the possibilities for $x$ are $423$, $57$, and $33$.

Now plug in these values into the equation $n = \frac{-1 + x}{2}$. $n$ can equal $211$, $28$, or $16$. Add $211 + 28 + 16 = 255$. The answer is $\boxed{\textbf{(A)}\ 255}$.

Solution 2

As above, start off by noting that the sum of the first $m$ odd integers $= m^2$ and the sum of the first $n$ even integers $= n(n+1)$. Clearly $m > n$, so let $m = n + a$, where $a$ is some positive integer. We have:

$(n+a)^2 = n(n+1) + 212$. Expanding, grouping like terms and factoring, we get: $n = (212 - a^2)/(2a - 1)$.

We know that $n$ and $a$ are both positive integers, so we need only check values of $a$ from $1$ to $14$ ($14^2 = 196 < 212 < 15^2 = 225$). Plugging in, the only values of $a$ that give integral solutions are $1, 4,$ and $6$. These gives $n$ values of $211, 28,$ and $16$, respectively. $211 + 28 + 16 = 255$. Hence, the answer is $\boxed{\textbf{(A)}\ 255}$.

See Also

2012 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png