Difference between revisions of "2012 AMC 10B Problems/Problem 13"

(Solution)
Line 2: Line 2:
  
 
Let <math>s</math> be the speed of the escalator and <math>c</math> be the speed of Clea. Using <math>d = v t</math>, the first statement can be translated to the equation <math>d = 60c</math>. The second statement can be translated to <math>d = 24(c+s)</math>. Since the same distance is being covered in each scenario, we can set the two equations equal and solve for <math>s</math>. We find that <math>s = \dfrac{3c}{2}</math>. The problem asks for the time it takes her to ride down the escalator when she just stands on it. Since <math>t = \dfrac{d}{s}</math> and <math>d = 60c</math>, we have <math>t = \dfrac{60c}{\dfrac{3c}{2}} = 40</math> seconds. Answer choice <math>\boxed{B}</math> is correct.
 
Let <math>s</math> be the speed of the escalator and <math>c</math> be the speed of Clea. Using <math>d = v t</math>, the first statement can be translated to the equation <math>d = 60c</math>. The second statement can be translated to <math>d = 24(c+s)</math>. Since the same distance is being covered in each scenario, we can set the two equations equal and solve for <math>s</math>. We find that <math>s = \dfrac{3c}{2}</math>. The problem asks for the time it takes her to ride down the escalator when she just stands on it. Since <math>t = \dfrac{d}{s}</math> and <math>d = 60c</math>, we have <math>t = \dfrac{60c}{\dfrac{3c}{2}} = 40</math> seconds. Answer choice <math>\boxed{B}</math> is correct.
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2012|ab=B|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:17, 8 February 2014

Solution

Let $s$ be the speed of the escalator and $c$ be the speed of Clea. Using $d = v t$, the first statement can be translated to the equation $d = 60c$. The second statement can be translated to $d = 24(c+s)$. Since the same distance is being covered in each scenario, we can set the two equations equal and solve for $s$. We find that $s = \dfrac{3c}{2}$. The problem asks for the time it takes her to ride down the escalator when she just stands on it. Since $t = \dfrac{d}{s}$ and $d = 60c$, we have $t = \dfrac{60c}{\dfrac{3c}{2}} = 40$ seconds. Answer choice $\boxed{B}$ is correct.

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png