Difference between revisions of "2014 AMC 10A Problems/Problem 14"

(Used more elementary language in the solution and shrunk diagram.)
(Solution)
Line 29: Line 29:
 
</asy>
 
</asy>
 
Note that if the <math>y</math>-intercepts have a sum of <math>0</math>, the distance from the origin to each of the intercepts must be the same. Call this distance <math>a</math>. Since the <math>\angle PAQ = 90^\circ</math>, the length of the median to the midpoint of the hypotenuse is equal to half the length of the hypotenuse. Since the median's length is <math>\sqrt{6^2+8^2} = 10</math>, this means <math>a=10</math>, and the length of the hypotenuse is <math>2a = 20</math>. Since the <math>x</math>-coordinate of <math>A</math> is the same as the altitude to the hypotenuse, <math>[APQ] = \dfrac{20 \cdot 6}{2} = \boxed{\textbf{(D)} \: 60}</math>.
 
Note that if the <math>y</math>-intercepts have a sum of <math>0</math>, the distance from the origin to each of the intercepts must be the same. Call this distance <math>a</math>. Since the <math>\angle PAQ = 90^\circ</math>, the length of the median to the midpoint of the hypotenuse is equal to half the length of the hypotenuse. Since the median's length is <math>\sqrt{6^2+8^2} = 10</math>, this means <math>a=10</math>, and the length of the hypotenuse is <math>2a = 20</math>. Since the <math>x</math>-coordinate of <math>A</math> is the same as the altitude to the hypotenuse, <math>[APQ] = \dfrac{20 \cdot 6}{2} = \boxed{\textbf{(D)} \: 60}</math>.
 +
 +
==Solution 2==
 +
 +
We can let the two lines be <cmath>y=mx+b</cmath> <cmath>y=-\frac{1}{m}x-b</cmath> This is because the lines are perpendicular, hence the <math>m</math> and <math>-\frac{1}{m}</math>, and the sum of the y-intercepts is equal to 0, hence the <math>b, -b</math>.
 +
 +
Since both lines contain the point <math>(6,8)</math>, we can plug this into the two equations to obtain <cmath>8=6m+b</cmath> and <cmath>8=-6\frac{1}{m}-b</cmath>
 +
 +
Adding the two equations gives <cmath>16=6m+\frac{-6}{m}</cmath> Multiplying by <math>m</math> gives <cmath>16m=6m^2-6</cmath> <cmath>\implies 6m^2-16m-6=0</cmath> <cmath>\implies 3m^2-8m-3=0</cmath> Factoring gives <cmath>(6m+2)(m-3)=0</cmath>
 +
 +
We can just let <math>m=3</math>, since the two values of <math>m</math> do not affect our solution - one is the slope of one line and the other is the slope of the other line.
 +
 +
Plugging <math>m=3</math> into one of our original equations, we obtain <cmath>8=6(3)+b</cmath> <cmath>\implies b=8-6(3)=-10</cmath>
 +
 +
Since <math>\bigtriangleup APQ</math> has hypotenuse <math>2|b|=20</math> and the altutude to the hypotenuse is equal to the the x-coordinate of point <math>A</math>, or 6, the area of <math>\bigtriangleup APQ</math> is equal to <cmath>\frac{20\cdot6}{2}=\boxed{\textbf{(D)}\ 60}</cmath>
  
 
==See Also==
 
==See Also==

Revision as of 11:44, 9 February 2014

Problem

The $y$-intercepts, $P$ and $Q$, of two perpendicular lines intersecting at the point $A(6,8)$ have a sum of zero. What is the area of $\triangle APQ$?

$\textbf{(A)}\ 45\qquad\textbf{(B)}\ 48\qquad\textbf{(C)}\ 54\qquad\textbf{(D)}\ 60\qquad\textbf{(E)}\ 72$

Solution

[asy]//Needs refining size(12cm); fill((0,10)--(6,8)--(0,-10)--cycle,rgb(.7,.7,.7)); for(int i=-2;i<=8;i+=1)   draw((i,-12)--(i,12),grey); for(int j=-12;j<=12;j+=1)   draw((-2,j)--(8,j),grey); draw((-3,0)--(9,0),linewidth(1),Arrows); //x-axis draw((0,-13)--(0,13),linewidth(1),Arrows); //y-axis dot((0,0)); dot((6,8)); draw((-2,10.66667)--(8,7.33333),Arrows); draw((7.33333,12)--(-0.66667,-12),Arrows); draw((6,8)--(0,8)); draw((6,8)--(0,0)); draw(rightanglemark((0,10),(6,8),(0,-10),20)); label("$A$",(6,8),NE); label("$a$", (0,5),W); label("$a$",(0,-5),W); label("$a$",(3,4),NW);  [/asy] Note that if the $y$-intercepts have a sum of $0$, the distance from the origin to each of the intercepts must be the same. Call this distance $a$. Since the $\angle PAQ = 90^\circ$, the length of the median to the midpoint of the hypotenuse is equal to half the length of the hypotenuse. Since the median's length is $\sqrt{6^2+8^2} = 10$, this means $a=10$, and the length of the hypotenuse is $2a = 20$. Since the $x$-coordinate of $A$ is the same as the altitude to the hypotenuse, $[APQ] = \dfrac{20 \cdot 6}{2} = \boxed{\textbf{(D)} \: 60}$.

Solution 2

We can let the two lines be \[y=mx+b\] \[y=-\frac{1}{m}x-b\] This is because the lines are perpendicular, hence the $m$ and $-\frac{1}{m}$, and the sum of the y-intercepts is equal to 0, hence the $b, -b$.

Since both lines contain the point $(6,8)$, we can plug this into the two equations to obtain \[8=6m+b\] and \[8=-6\frac{1}{m}-b\]

Adding the two equations gives \[16=6m+\frac{-6}{m}\] Multiplying by $m$ gives \[16m=6m^2-6\] \[\implies 6m^2-16m-6=0\] \[\implies 3m^2-8m-3=0\] Factoring gives \[(6m+2)(m-3)=0\]

We can just let $m=3$, since the two values of $m$ do not affect our solution - one is the slope of one line and the other is the slope of the other line.

Plugging $m=3$ into one of our original equations, we obtain \[8=6(3)+b\] \[\implies b=8-6(3)=-10\]

Since $\bigtriangleup APQ$ has hypotenuse $2|b|=20$ and the altutude to the hypotenuse is equal to the the x-coordinate of point $A$, or 6, the area of $\bigtriangleup APQ$ is equal to \[\frac{20\cdot6}{2}=\boxed{\textbf{(D)}\ 60}\]

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png