Difference between revisions of "2011 AIME I Problems/Problem 9"

(Solution)
Line 10: Line 10:
 
<cmath>24\sin ^3 x=1-\sin ^2 x</cmath>
 
<cmath>24\sin ^3 x=1-\sin ^2 x</cmath>
 
<cmath>24\sin ^3 x+\sin ^2 x - 1=0</cmath>
 
<cmath>24\sin ^3 x+\sin ^2 x - 1=0</cmath>
Testing values using the rational root theorem gives <math>\sin x=\frac{1}{3}</math> as a root, <math>\sin^{-1} \frac{1}{3}</math> does fall in the first quadrant so it satisfies the interval. Thus
+
Testing values using the rational root theorem gives <math>\sin x=\frac{1}{3}</math> as a root, <math>\sin^{-1} \frac{1}{3}</math> does fall in the first quadrant so it satisfies the interval.  
 +
There are now two ways to finish this problem.
 +
 
 +
'''First way:''' Since <math>\sin x=\frac{1}{3}</math>, we have
 
<cmath>\sin ^2 x=\frac{1}{9}</cmath>
 
<cmath>\sin ^2 x=\frac{1}{9}</cmath>
 
Using the Pythagorean Identity gives us <math>\cos ^2 x=\frac{8}{9}</math>. Then we use the definition of <math>\cot ^2 x</math> to compute our final answer. <math>24\cot ^2 x=24\frac{\cos ^2 x}{\sin ^2 x}=24\left(\frac{\frac{8}{9}}{\frac{1}{9}}\right)=24(8)=\boxed{192}</math>.
 
Using the Pythagorean Identity gives us <math>\cos ^2 x=\frac{8}{9}</math>. Then we use the definition of <math>\cot ^2 x</math> to compute our final answer. <math>24\cot ^2 x=24\frac{\cos ^2 x}{\sin ^2 x}=24\left(\frac{\frac{8}{9}}{\frac{1}{9}}\right)=24(8)=\boxed{192}</math>.
 +
 +
'''Second way:''' Multiplying our old equation <math>24\sin ^3 x=\cos ^2 x</math> by <math>\dfrac{24}{\sin^2x}</math> gives
 +
<cmath>576\sin x = 24\cot^2x</cmath>
 +
So, <math>24\cot^2x=576\sin x=576\cdot\frac{1}{3}=\boxed{192}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2011|n=I|num-b=8|num-a=10}}
 
{{AIME box|year=2011|n=I|num-b=8|num-a=10}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:00, 28 February 2014

Problem

Suppose $x$ is in the interval $[0, \pi/2]$ and $\log_{24\sin x} (24\cos x)=\frac{3}{2}$. Find $24\cot^2 x$.

Solution

We can rewrite the given expression as \[\sqrt{24^3\sin^3 x}=24\cos x\] Square both sides and divide by $24^2$ to get \[24\sin ^3 x=\cos ^2 x\] Rewrite $\cos ^2 x$ as $1-\sin ^2 x$ \[24\sin ^3 x=1-\sin ^2 x\] \[24\sin ^3 x+\sin ^2 x - 1=0\] Testing values using the rational root theorem gives $\sin x=\frac{1}{3}$ as a root, $\sin^{-1} \frac{1}{3}$ does fall in the first quadrant so it satisfies the interval. There are now two ways to finish this problem.

First way: Since $\sin x=\frac{1}{3}$, we have \[\sin ^2 x=\frac{1}{9}\] Using the Pythagorean Identity gives us $\cos ^2 x=\frac{8}{9}$. Then we use the definition of $\cot ^2 x$ to compute our final answer. $24\cot ^2 x=24\frac{\cos ^2 x}{\sin ^2 x}=24\left(\frac{\frac{8}{9}}{\frac{1}{9}}\right)=24(8)=\boxed{192}$.

Second way: Multiplying our old equation $24\sin ^3 x=\cos ^2 x$ by $\dfrac{24}{\sin^2x}$ gives \[576\sin x = 24\cot^2x\] So, $24\cot^2x=576\sin x=576\cdot\frac{1}{3}=\boxed{192}$.

See also

2011 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png