Difference between revisions of "2009 AIME I Problems/Problem 5"

(This proposes a second solution.)
Line 3: Line 3:
 
Triangle <math>ABC</math> has <math>AC = 450</math> and <math>BC = 300</math>. Points <math>K</math> and <math>L</math> are located on <math>\overline{AC}</math> and <math>\overline{AB}</math> respectively so that <math>AK = CK</math>, and <math>\overline{CL}</math> is the angle bisector of angle <math>C</math>. Let <math>P</math> be the point of intersection of <math>\overline{BK}</math> and <math>\overline{CL}</math>, and let <math>M</math> be the point on line <math>BK</math> for which <math>K</math> is the midpoint of <math>\overline{PM}</math>. If <math>AM = 180</math>, find <math>LP</math>.
 
Triangle <math>ABC</math> has <math>AC = 450</math> and <math>BC = 300</math>. Points <math>K</math> and <math>L</math> are located on <math>\overline{AC}</math> and <math>\overline{AB}</math> respectively so that <math>AK = CK</math>, and <math>\overline{CL}</math> is the angle bisector of angle <math>C</math>. Let <math>P</math> be the point of intersection of <math>\overline{BK}</math> and <math>\overline{CL}</math>, and let <math>M</math> be the point on line <math>BK</math> for which <math>K</math> is the midpoint of <math>\overline{PM}</math>. If <math>AM = 180</math>, find <math>LP</math>.
  
== Solution ==
+
== Solution 1==
 
<center><asy>
 
<center><asy>
 
import markers;
 
import markers;
Line 41: Line 41:
  
 
<cmath>LP=\boxed {072}</cmath>
 
<cmath>LP=\boxed {072}</cmath>
 +
 +
==Solution 2==
 +
<center><asy>
 +
import markers;
 +
defaultpen(fontsize(8));
 +
size(300);
 +
pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P;
 +
C = intersectionpoints(Circle(A,450), Circle(B,300))[0];
 +
K =  midpoint(A--C);
 +
L = (3*B+2*A)/5;
 +
P = extension(B,K,C,L);
 +
M = 2*K-P;
 +
draw(A--B--C--cycle);
 +
draw(C--L);draw(B--M--A);
 +
markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true)));
 +
markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true)));
 +
dot(A^^B^^C^^K^^L^^M^^P);
 +
label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1));
 +
label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1));
 +
label("$P$",P,(1,1));
 +
label("$180$",(A+M)/2,(-1,0));label("$y$",(P+C)/2,(-1,0));label("$x$",(A+K)/2,(0,2));label("$x$",(K+C)/2,(0,2));
 +
label("$2y/5$",(L+P)/2,(-1,0));label("$180$",(B+C)/2,(1,1));
 +
</asy></center>
 +
Using the diagram above, we can solve this problem by using mass points. By angle bisector theorem:
 +
<cmath>\frac{BL}{CB}=\frac{AL}{CA}\implies\frac{BL}{300}=\frac{AL}{450}\implies3BL=2AL</cmath>
 +
So, we can weight <math>A</math> as <math>2</math> and <math>B</math> as <math>3</math> and <math>L</math> as <math>5</math>. Since <math>K</math> is the midpoint of <math>A</math> and <math>C</math>, the weight of <math>A</math> is equal to the weight of <math>C</math>, which equals <math>2</math>.
 +
Also, since the weight of <math>L</math> is <math>5</math> and <math>C</math> is <math>2</math>, we can weight <math>P</math> as <math>7</math>.
 +
<cmath>\n</cmath>
 +
By the definition of mass points, <cmath>\frac{LP}{CP}=\frac{2}{5}\impliesLP=\frac{2}{5}CP</cmath>
 +
By vertical angles, angle <math>MKA =</math> angle <math>PKC</math>.
 +
Also, it is given that <math>AK=CK</math> and <math>PK=MK</math>.
 +
<cmath>\n</cmath>By the SAS congruence, triangle <math>MKA</math> = triangle <math>PKC</math>. So, <math>MA</math> = <math>CP</math> = 180.
 +
Since <math>LP=\frac{2}{5}CP</math>, <math>LP = \frac{2}{5}180 = \boxed{072}</math>
 +
  
 
== See also ==
 
== See also ==

Revision as of 21:49, 30 August 2014

Problem

Triangle $ABC$ has $AC = 450$ and $BC = 300$. Points $K$ and $L$ are located on $\overline{AC}$ and $\overline{AB}$ respectively so that $AK = CK$, and $\overline{CL}$ is the angle bisector of angle $C$. Let $P$ be the point of intersection of $\overline{BK}$ and $\overline{CL}$, and let $M$ be the point on line $BK$ for which $K$ is the midpoint of $\overline{PM}$. If $AM = 180$, find $LP$.

Solution 1

[asy] import markers; defaultpen(fontsize(8)); size(300); pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P; C = intersectionpoints(Circle(A,450), Circle(B,300))[0]; K =  midpoint(A--C); L = (3*B+2*A)/5; P = extension(B,K,C,L); M = 2*K-P; draw(A--B--C--cycle); draw(C--L);draw(B--M--A); markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true))); markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true))); dot(A^^B^^C^^K^^L^^M^^P); label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1)); label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1)); label("$P$",P,(1,1)); label("$180$",(A+M)/2,(-1,0));label("$180$",(P+C)/2,(-1,0));label("$225$",(A+K)/2,(0,2));label("$225$",(K+C)/2,(0,2)); label("$72$",(L+P)/2,(-1,0));label("$300$",(B+C)/2,(1,1)); [/asy]

Since $K$ is the midpoint of $\overline{PM}$ and $\overline{AC}$, quadrilateral $AMCP$ is a parallelogram, which implies $AM||LP$ and $\bigtriangleup{AMB}$ is similar to $\bigtriangleup{LPB}$

Thus,

\[\frac {AM}{LP}=\frac {AB}{LB}=\frac {AL+LB}{LB}=\frac {AL}{LB}+1\]

Now lets apply the angle bisector theorem.

\[\frac {AL}{LB}=\frac {AC}{BC}=\frac {450}{300}=\frac {3}{2}\]

\[\frac {AM}{LP}=\frac {AL}{LB}+1=\frac {5}{2}\]

\[\frac {180}{LP}=\frac {5}{2}\]

\[LP=\boxed {072}\]

Solution 2

[asy] import markers; defaultpen(fontsize(8)); size(300); pair A=(0,0), B=(30*sqrt(331),0), C, K, L, M, P; C = intersectionpoints(Circle(A,450), Circle(B,300))[0]; K =  midpoint(A--C); L = (3*B+2*A)/5; P = extension(B,K,C,L); M = 2*K-P; draw(A--B--C--cycle); draw(C--L);draw(B--M--A); markangle(n=1,radius=15,A,C,L,marker(markinterval(stickframe(n=1),true))); markangle(n=1,radius=15,L,C,B,marker(markinterval(stickframe(n=1),true))); dot(A^^B^^C^^K^^L^^M^^P); label("$A$",A,(-1,-1));label("$B$",B,(1,-1));label("$C$",C,(1,1)); label("$K$",K,(0,2));label("$L$",L,(0,-2));label("$M$",M,(-1,1)); label("$P$",P,(1,1)); label("$180$",(A+M)/2,(-1,0));label("$y$",(P+C)/2,(-1,0));label("$x$",(A+K)/2,(0,2));label("$x$",(K+C)/2,(0,2)); label("$2y/5$",(L+P)/2,(-1,0));label("$180$",(B+C)/2,(1,1)); [/asy]

Using the diagram above, we can solve this problem by using mass points. By angle bisector theorem: \[\frac{BL}{CB}=\frac{AL}{CA}\implies\frac{BL}{300}=\frac{AL}{450}\implies3BL=2AL\] So, we can weight $A$ as $2$ and $B$ as $3$ and $L$ as $5$. Since $K$ is the midpoint of $A$ and $C$, the weight of $A$ is equal to the weight of $C$, which equals $2$. Also, since the weight of $L$ is $5$ and $C$ is $2$, we can weight $P$ as $7$.

\[\n\] (Error compiling LaTeX. Unknown error_msg)

By the definition of mass points,

\[\frac{LP}{CP}=\frac{2}{5}\impliesLP=\frac{2}{5}CP\] (Error compiling LaTeX. Unknown error_msg)

By vertical angles, angle $MKA =$ angle $PKC$. Also, it is given that $AK=CK$ and $PK=MK$.

\[\n\] (Error compiling LaTeX. Unknown error_msg)

By the SAS congruence, triangle $MKA$ = triangle $PKC$. So, $MA$ = $CP$ = 180.

Since $LP=\frac{2}{5}CP$, $LP = \frac{2}{5}180 = \boxed{072}$


See also

2009 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png