Difference between revisions of "2014 IMO Problems/Problem 3"

(Created page with "==Problem== Convex quadrilateral <math>ABCD</math> has <math>\angle{ABC}=\angle{CDA}=90^{\circ}. Point </math>H<math> is the foot of the perpendicual from </math>A<math> to </mat...")
 
m
Line 1: Line 1:
 
==Problem==
 
==Problem==
Convex quadrilateral <math>ABCD</math> has <math>\angle{ABC}=\angle{CDA}=90^{\circ}. Point </math>H<math> is the foot of the perpendicual from </math>A<math> to </math>BD<math>. Points </math>S<math> and </math>T<math> lie on sides </math>AB<math> and </math>AD<math>, respectively, such that </math>H<math> lies inside </math>\triangle{SCT} and
+
Convex quadrilateral <math>ABCD</math> has <math>\angle{ABC}=\angle{CDA}=90^{\circ}</math>. Point <math>H</math> is the foot of the perpendicular from <math>A</math> to <math>BD</math>. Points <math>S</math> and <math>T</math> lie on sides <math>AB</math> and <math>AD</math>, respectively, such that <math>H</math> lies inside <math>\triangle{SCT}</math> and
 
<cmath>\angle{CHS}-\angle{CSB}=90^{\circ},\quad \angle{THC}-\angle{DTC} = 90^{\circ}.</cmath>
 
<cmath>\angle{CHS}-\angle{CSB}=90^{\circ},\quad \angle{THC}-\angle{DTC} = 90^{\circ}.</cmath>
  

Revision as of 04:26, 9 October 2014

Problem

Convex quadrilateral $ABCD$ has $\angle{ABC}=\angle{CDA}=90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside $\triangle{SCT}$ and \[\angle{CHS}-\angle{CSB}=90^{\circ},\quad \angle{THC}-\angle{DTC} = 90^{\circ}.\]

Solution

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See Also

2014 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions