Difference between revisions of "2014 IMO Problems"

m
m
Line 1: Line 1:
 +
==Problem 1==
 +
Let <math>n\ge2</math> be an integer. Consider an <math>n\times n</math> chessboard consisting of <math>n^2</math> unit squares. A configuration of <math>n</math> rooks on this board is <math>\textit{peaceful}</math> if every row and every column contains exactly one rook. Find the greatest positive integer <math>k</math> such that, for each peaceful configuration of <math>n</math> rooks, there is a <math>k\times k</math> square which does not contain a rook on any of its <math>k^2</math> squares.
 +
 +
[[2014 IMO Problems/Problem 1|Solution]]
 +
 
==Problem 2==
 
==Problem 2==
 
Let <math>n\ge2</math> be an integer. Consider an <math>n\times n</math> chessboard consisting of <math>n^2</math> unit squares. A configuration of <math>n</math> rooks on this board is <math>peaceful</math> if every row and every column contains exactly one rook. Find the greatest positive integer <math>k</math> such that, for each peaceful configuration of <math>n</math> rooks, there is a <math>k\times k</math> square which does not contain a rook on any of its <math>k^2</math> squares.
 
Let <math>n\ge2</math> be an integer. Consider an <math>n\times n</math> chessboard consisting of <math>n^2</math> unit squares. A configuration of <math>n</math> rooks on this board is <math>peaceful</math> if every row and every column contains exactly one rook. Find the greatest positive integer <math>k</math> such that, for each peaceful configuration of <math>n</math> rooks, there is a <math>k\times k</math> square which does not contain a rook on any of its <math>k^2</math> squares.

Revision as of 04:48, 9 October 2014

Problem 1

Let $n\ge2$ be an integer. Consider an $n\times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is $\textit{peaceful}$ if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k\times k$ square which does not contain a rook on any of its $k^2$ squares.

Solution

Problem 2

Let $n\ge2$ be an integer. Consider an $n\times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is $peaceful$ if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k\times k$ square which does not contain a rook on any of its $k^2$ squares.

Solution

Problem 3

Points $P$ and $Q$ lie on side $BC$ of acute-angled $\triangle{ABC}$ so that $\angle{PAB}=\angle{BCA}$ and $\angle{CAQ}=\angle{ABC}$. Points $M$ and $N$ lie on lines $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$, and $Q$ is the midpoint of $AN$. Prove that lines $BM$ and $CN$ intersect on the circumcircle of $\triangle{ABC}$.

Solution

Problem 4

Points $P$ and $Q$ lie on side $BC$ of acute-angled $\triangle{ABC}$ so that $\angle{PAB}=\angle{BCA}$ and $\angle{CAQ}=\angle{ABC}$. Points $M$ and $N$ lie on lines $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$, and $Q$ is the midpoint of $AN$. Prove that lines $BM$ and $CN$ intersect on the circumcircle of $\triangle{ABC}$.

Solution

Problem 5

For each positive integer $n$, the Bank of Cape Town issues coins of denomination $\tfrac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99+\tfrac{1}{2}$, prove that it is possible to split this collection into $100$ or fewer groups, such that each group has total value at most $1$.

Solution

Problem 6

A set of lines in the plane is in $\textit{general position}$ if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its $\textit{finite regions}$. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ of the lines blue in such a way that none of its finite regions has a completely blue boundary.

Solution