Difference between revisions of "2015 AMC 12B Problems/Problem 18"
Flamedragon (talk | contribs) (Created page with "==Problem== ==Solution== ==See Also== {{AMC12 box|year=2015|ab=B|num-a=19|num-b=17}} {{MAA Notice}}") |
Pi over two (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | For every composite positive integer <math>n</math>, define <math>r(n)</math> to be the sum of the factors in the prime factorization of <math>n</math>. For example, <math>r(50) = 12</math> because the prime factorization of <math>50</math> is <math>2 \times 5^{2}</math>, and <math>2 + 5 + 5 = 12</math>. What is the range of the function <math>r</math>, <math>\{r(n): n \text{ is a composite positive integer}\}</math> ? | ||
− | + | <math>\textbf{(A)}\; ? \qquad\textbf{(B)}\; ? \qquad\textbf{(C)}\; ? \qquad\textbf{(D)}\; ? \qquad\textbf{(E)}\; ?</math> | |
==Solution== | ==Solution== |
Revision as of 13:27, 3 March 2015
Problem
For every composite positive integer , define to be the sum of the factors in the prime factorization of . For example, because the prime factorization of is , and . What is the range of the function , ?
Solution
See Also
2015 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.