Difference between revisions of "2003 AMC 12A Problems/Problem 19"

(Solution)
Line 11: Line 11:
 
If we take the parabola <math>ax^2 + bx + c</math> and reflect it over the x - axis, we have the parabola <math>-ax^2 - bx - c</math>. Without loss of generality, let us say that the parabola is translated 5 units to the left, and the reflection to the right. Then:
 
If we take the parabola <math>ax^2 + bx + c</math> and reflect it over the x - axis, we have the parabola <math>-ax^2 - bx - c</math>. Without loss of generality, let us say that the parabola is translated 5 units to the left, and the reflection to the right. Then:
 
   
 
   
<cmath> \begin{align*} f(x) &= a(x+5)^2 + b(x+5) + c = ax^2 + (10a+b)x + 25a + 5b + c \  g(x)  &= -a(x-5)^2 - b(x-5) - c = -ax^2 + 10ax -bx - 25a + 5b - c \end{align*} </cmath>  
+
<cmath> f(x)=a(x+5)2+b(x+5)+c=ax2+(10a+b)x+25a+5b+cg(x)=a(x5)2b(x5)c=ax2+10axbx25a+5bc </cmath>  
  
 
Adding them up produces: <cmath> (f + g)(x) &= ax^2 + (10a+b)x + 25a + 5b + c - ax^2 + 10ax -bx - 25a + 5b - c &= 20ax + 10b </cmath>  
 
Adding them up produces: <cmath> (f + g)(x) &= ax^2 + (10a+b)x + 25a + 5b + c - ax^2 + 10ax -bx - 25a + 5b - c &= 20ax + 10b </cmath>  

Revision as of 19:31, 20 June 2015

Problem

A parabola with equation $y=ax^2+bx+c$ is reflected about the $x$-axis. The parabola and its reflection are translated horizontally five units in opposite directions to become the graphs of $y=f(x)$ and $y=g(x)$, respectively. Which of the following describes the graph of $y=(f+g)(x)$?

$\textbf{(A)}\ \text{a parabola tangent to the }x\text{-axis}$ $\textbf{(B)}\ \text{a parabola not tangent to the }x\text{-axis}\qquad\textbf{(C)}\ \text{a horizontal line}$ $\textbf{(D)}\ \text{a non-horizontal line}\qquad\textbf{(E)}\ \text{the graph of a cubic function}$

Solution

If we take the parabola $ax^2 + bx + c$ and reflect it over the x - axis, we have the parabola $-ax^2 - bx - c$. Without loss of generality, let us say that the parabola is translated 5 units to the left, and the reflection to the right. Then:

\begin{align*} f(x) = a(x+5)^2 + b(x+5) + c = ax^2 + (10a+b)x + 25a + 5b + c \\  g(x)  = -a(x-5)^2 - b(x-5) - c = -ax^2 + 10ax -bx - 25a + 5b - c \end{align*}

Adding them up produces:

\[(f + g)(x) &= ax^2 + (10a+b)x + 25a + 5b + c - ax^2 + 10ax -bx - 25a + 5b - c &= 20ax + 10b\] (Error compiling LaTeX. Unknown error_msg)

This is a line with slope $20a$. Since $a$ cannot be $0$ (because $ax^2 + bx + c$ would be a line) we end up with $\boxed{\textbf{(D)} \text{ a non-horizontal line }}$

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png