Difference between revisions of "2014 AMC 10A Problems/Problem 22"
(→Solution 2 (non-trig)) |
(→Solution 2 (non-trig)) |
||
Line 11: | Line 11: | ||
==Solution 2 (non-trig)== | ==Solution 2 (non-trig)== | ||
− | Let <math>F</math> be a point on line <math>\overline{CD}</math> such that <math>\angle EBF = 15^\circ</math>. By the angle bisector theorem, <math>\frac{\overline{BC}}{\overline{BF}} = \frac{\overline{CE}}{\overline{EF}}</math>. Since <math>\triangle BFC</math> is a <math>30-60-90</math> right triangle, <math>\overline{CF} = \frac{10\sqrt{3}}{3}</math> and <math>\overline{BF} = \frac{20\sqrt{3}}{3}</math>. Additionally, <cmath>\overline{CE} + \overline{EF} = \overline{CF} = \frac{10\sqrt{3}}{3}</cmath>. Now, plugging in the obtained values, we get <math>\frac{10}{\frac{20\sqrt{3}}{3}} = \frac{\overline{CE}}{\overline{EF}} \Rightarrow \frac{2\sqrt{3}}{3}\overline{CE} = \overline{EF}</math> and <math>\overline{CE} + \overline{EF} = \frac{10\sqrt{3}}{3}</math>. Plugging in <math>\frac{2\sqrt{3}}{3}\overline{CE}</math> for <math>\overline{EF}</math> in the second equation yields <math>\frac{2\sqrt{3}}{3}\overline{CE} + \overline{CE} = \frac{10\sqrt{3}}{3} \Rightarrow \overline{CE} = 20 - 10\sqrt{3}</math>, so <math>\overline{DE} = 10\sqrt{3}</math>. Because <math>\triangle ADE</math> is a <math>30-60-90</math> triangle, <math>\overline{AE} = \boxed{\textbf{(E)}~20}</math>. | + | Let <math>F</math> be a point on line <math>\overline{CD}</math> such that points <math>C</math> and <math>F</math> are distinct and that <math>\angle EBF = 15^\circ</math>. By the angle bisector theorem, <math>\frac{\overline{BC}}{\overline{BF}} = \frac{\overline{CE}}{\overline{EF}}</math>. Since <math>\triangle BFC</math> is a <math>30-60-90</math> right triangle, <math>\overline{CF} = \frac{10\sqrt{3}}{3}</math> and <math>\overline{BF} = \frac{20\sqrt{3}}{3}</math>. Additionally, <cmath>\overline{CE} + \overline{EF} = \overline{CF} = \frac{10\sqrt{3}}{3}</cmath>. Now, plugging in the obtained values, we get <math>\frac{10}{\frac{20\sqrt{3}}{3}} = \frac{\overline{CE}}{\overline{EF}} \Rightarrow \frac{2\sqrt{3}}{3}\overline{CE} = \overline{EF}</math> and <math>\overline{CE} + \overline{EF} = \frac{10\sqrt{3}}{3}</math>. Plugging in <math>\frac{2\sqrt{3}}{3}\overline{CE}</math> for <math>\overline{EF}</math> in the second equation yields <math>\frac{2\sqrt{3}}{3}\overline{CE} + \overline{CE} = \frac{10\sqrt{3}}{3} \Rightarrow \overline{CE} = 20 - 10\sqrt{3}</math>, so <math>\overline{DE} = 10\sqrt{3}</math>. Because <math>\triangle ADE</math> is a <math>30-60-90</math> triangle, <math>\overline{AE} = \boxed{\textbf{(E)}~20}</math>. |
==See Also== | ==See Also== |
Revision as of 11:59, 28 December 2015
Problem
In rectangle , and . Let be a point on such that . What is ?
Solution
Note that . (If you do not know the tangent half-angle formula, it is ). Therefore, we have . Since is a triangle,
Solution 2 (non-trig)
Let be a point on line such that points and are distinct and that . By the angle bisector theorem, . Since is a right triangle, and . Additionally, . Now, plugging in the obtained values, we get and . Plugging in for in the second equation yields , so . Because is a triangle, .
See Also
2014 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.