Difference between revisions of "2010 AMC 8 Problems/Problem 4"

(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
What is the sum of the mean, medium, and mode of the numbers <math>2,3,0,3,1,4,0,3</math>?  
+
What is the sum of the mean, median, and mode of the numbers <math>2,3,0,3,1,4,0,3</math>?  
  
 
<math> \textbf{(A)}\ 6.5 \qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 7.5\qquad\textbf{(D)}\ 8.5\qquad\textbf{(E)}\ 9 </math>
 
<math> \textbf{(A)}\ 6.5 \qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 7.5\qquad\textbf{(D)}\ 8.5\qquad\textbf{(E)}\ 9 </math>

Revision as of 11:22, 22 June 2016

Problem

What is the sum of the mean, median, and mode of the numbers $2,3,0,3,1,4,0,3$?

$\textbf{(A)}\ 6.5 \qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 7.5\qquad\textbf{(D)}\ 8.5\qquad\textbf{(E)}\ 9$

Solution

Putting the numbers in numerical order we get the list $0,0,1,2,3,3,3,4.$ The mode is $3.$ The median is $\frac{2+3}{2}=2.5.$ The average is $\frac{0+0+1+2+3+3+3+4}{8}=\frac{16}{8}=2.$ The sum of all three is $3+2.5+2=\boxed{\textbf{(C)}\ 7.5}$

See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png