Difference between revisions of "1968 AHSME Problems/Problem 1"
m |
(→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
+ | |||
+ | Let <math>d</math> be the diameter of the original circle. If <math>d</math> is increased by <math>\pi</math>, then the new circumference is <math>\pi d + \pi^2 \Rightarrow \pi d + \pi^2 - \pi d = \pi ^2</math> | ||
<math>\fbox{D}</math> | <math>\fbox{D}</math> | ||
Revision as of 12:38, 28 July 2016
Problem
Let units be the increase in circumference of a circle resulting from an increase in units in the diameter. Then equals:
Solution
Let be the diameter of the original circle. If is increased by , then the new circumference is
See also
1968 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.