Difference between revisions of "1992 AIME Problems/Problem 13"
(LaTeX correctly, people!) |
(LaTeX correctly, people!) |
||
Line 14: | Line 14: | ||
<math>b^2=-a^2 -\frac{3200}{9}a +1600=-\left(a +\frac{1600}{9}\right)^2 +1600+\left(\frac{1600}{9}\right)^2</math>. | <math>b^2=-a^2 -\frac{3200}{9}a +1600=-\left(a +\frac{1600}{9}\right)^2 +1600+\left(\frac{1600}{9}\right)^2</math>. | ||
− | <math>\Rightarrow b\le\sqrt{1600+(\frac{1600}{9})^2}=40\sqrt{1+\frac{1600}{81}}=\frac{40}{9}\sqrt{1681}=\frac{40\cdot 41}{9}</math>. | + | <math>\Rightarrow b\le\sqrt{1600+\left(\frac{1600}{9}\right)^2}=40\sqrt{1+\frac{1600}{81}}=\frac{40}{9}\sqrt{1681}=\frac{40\cdot 41}{9}</math>. |
Then the area is <math>9\cdot\frac{1}{2} \cdot \frac{40\cdot 41}{9} = \boxed{820}</math>. | Then the area is <math>9\cdot\frac{1}{2} \cdot \frac{40\cdot 41}{9} = \boxed{820}</math>. | ||
+ | |||
===Solution 2=== | ===Solution 2=== | ||
Let the three sides be <math>9,40x,41x</math>, so the area is <math>\frac14\sqrt {(81^2 - 81x^2)(81x^2 - 1)}</math> by Heron's formula. By AM-GM, <math>\sqrt {(81^2 - 81x^2)(81x^2 - 1)}\le\frac {81^2 - 1}2</math>, and the maximum possible area is <math>\frac14\cdot\frac {81^2 - 1}2 = \frac18(81 - 1)(81 + 1) = 10\cdot82 = \boxed{820}</math>. This occurs when <math>81^2 - 81x^2 = 81x^2 - 1\implies x = \frac {4\sqrt {205}}9</math>. | Let the three sides be <math>9,40x,41x</math>, so the area is <math>\frac14\sqrt {(81^2 - 81x^2)(81x^2 - 1)}</math> by Heron's formula. By AM-GM, <math>\sqrt {(81^2 - 81x^2)(81x^2 - 1)}\le\frac {81^2 - 1}2</math>, and the maximum possible area is <math>\frac14\cdot\frac {81^2 - 1}2 = \frac18(81 - 1)(81 + 1) = 10\cdot82 = \boxed{820}</math>. This occurs when <math>81^2 - 81x^2 = 81x^2 - 1\implies x = \frac {4\sqrt {205}}9</math>. |
Revision as of 16:45, 8 October 2016
Problem
Triangle has and . What's the largest area that this triangle can have?
Solution
Solution 1
First, consider the triangle in a coordinate system with vertices at , , and . Applying the distance formula, we see that .
We want to maximize , the height, with being the base.
Simplifying gives .
To maximize , we want to maximize . So if we can write: , then is the maximum value of (this follows directly from the trivial inequality, because if then plugging in for gives us ).
.
.
Then the area is .
Solution 2
Let the three sides be , so the area is by Heron's formula. By AM-GM, , and the maximum possible area is . This occurs when .
Solution 3
Let be the endpoints of the side with length . Let be the Apollonian Circle of with ratio ; let this intersect at and , where is inside and is outside. Then because describes a harmonic set, . Finally, this means that the radius of is .
Since the area is maximized when the altitude to is maximized, clearly we want the last vertex to be the highest point of , which just makes the altitude have length . Thus, the area of the triangle is
See also
1992 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.